PART — II 3rd Semester

CURRICULAR STRUCTURE AND SYLLABI OF FULL-TIME DIPLOMA COURSES IN ELECTRICAL & ELECTRONICS ENGINEERING & TECHNOLOGY

WEST BENGAL STATE COUNCIL OF TECHNICAL EDUCATION

(A Statutory Body under West Bengal Act XXI of 1995) "Kolkata Karigori Bhavan", 2nd Floor, 110 S. N. Banerjee Road, Kolkata – 700013 Further suggestion may be submitted to the syllabus committee. List of the coordinators for the branch of Diploma in Electrical & Electronics Engineering are:

≻ S	ri Ashim Kumar Manna	Mobile:8902701784
≻ S	ri Swarup Kar	Mobile:9433689007
≻ S	ri Pinaki Ranjan Paul	Mobile:9433130215
≻ S	ri Anup Sarkar	Mobile:9433521132
≻ S	ri Swarup Kayal	Mobile:9433164470

WEST BENGAL STATE COUNCIL OF TECHNICAL EDUCATION

TEACHING AND EXAMINATION SCHEME FOR DIPLOMA IN ENGINEERING COURSES

COURSE NAME: FULL TIME DIPLOMA IN ELECTRICAL & ELECTRONICS ENGINEERING

DURATION OF COURSE: 6 SEMESTERS

SEMESTER: THIRD

BRANCH: ELECTRICAL & ELECTRONICS ENGINEERING

SR.	SUBJECT	CREDITS	P	ERIO	DS	EVALUATION SCHEME						
NO.			L	TU	PR	INTERNAL SCHEME		ESE	PR	@TW	Total Marks	
						TA	СТ	Total				магкя
1.	Electric Circuit & Network	3	4	-		10	20	30	70	-	-	100
2.	Analog Electronics -I	4	4		-	10	20	30	70	-	-	100
3.	Electrical & Electronics Measuring Instrument	3	3	-	-	10	20	30	70	-	-	100
4.	Electrical Machine-I	3	3	-	-	10	20	30	70	-	-	100
5.	C Programming	3	3	-	-	5	10	15	35	-	-	50
6.	Circuit Theory & Network Analysis Laboratory	1	-	-	2	-	-	-	-	50	-	50
7.	Analog Electronics-I Laboratory	2	-	-	3	-	-	-	-	50	-	50
8.	Computer Programming Language Laboratory	1	-	-	2	-	-	-	-	50	-	50
9.	Electrical Machine-I Laboratory	2	-	-	3	-	-	-	-	50	-	50
10.	Electrical & Electronics Workshop-I	1			2					50		50
11.	Professional Practice - I	1	-	-	2	-	-	-	-	-	50	50
	Total	24	17	-	16	50	100	150	350	250	50	800

STUDENT CONTACT HOURS PER WEEK:33 hrs, (Teaching-15 weeks + Internal Exam-2 weeks)

THEORY AND PRACTICAL PERIODS OF 60 MINUTES EACH

ABBREVIATIONS: L- Lecture, TU- Tutorials, PR- Practical, TA- Teachers Assessment, CT- Class Test, ESE- End Semester Exam, @TW-Term Work

TA (Teacher's assessment) = 10 marks: Attendance & surprise quizzes = 5 marks and Assignment & group discussion = 5 marks

TA (Teacher's assessment) = 5 marks : Attendance & surprise quizzes + Assignment & group discussion = 5 marks

Total Marks : 800

Minimum passing for Sessional marks is 40%, and for theory subject 40%.

Assessment of Practical, Oral & term work to be done as per the prevailing norms of curriculum implementation & assessment.

Name of the course: Electric Circuit & Network						
Course Code: EEE/ECN/S3	Semester: Third					
Duration: One Semester (Teaching - 15	Maximum Marks: 100 Marks					
weeks + Internal Exam-2 weeks)						
Teaching Scheme:	Examination Scheme					
Theory: 3 contact hrs./ week Class Test (Internal Examination): 20 Marks						
Tutorial: 1 contact hours / week	Teacher's Assessment (Attendance, Assignment & interaction): 10 Marks					
Practical: 2 contact hours/ week	End Semester Examination: 70 Marks					
Credit: 5 (Five)	Practical: 50 Marks					
Rationale:						
This subject finds utility in understanding th	ne concepts in other electrical subjects such as Electrical Power System,					
Electrical Measurement and Instrumentation	n, & Electrical Machines etc.					
Objectives:						
1. Define the basic elements; electric circ	cuit terminology; energy sources used in electrical circuit and also AC					
waveform and its various quantities.						
2. Interpret the response of R,L,C element	nts to AC supply.					
3. Calculate various parameters of AC C	3. Calculate various parameters of AC Circuits.					
4. Analyze dc and ac circuits using Mesh	and Node methods					
5. Use Network Theorems for solutions of	of DC Networks					
6. Interpret Transient Response						

7. Use of Laplace Transform

	Content (Name of topic)	Periods	Marks
	Group-A		
Unit 1	Review of Basic Concepts of Electrical Circuit:	04	05
	1.1 Electrical Circuit Elements R, L, C		
	1.2 Voltage and Current Source.		
	1.3 A.C. waveform and definition of various terms associated with it.		
	1.4 Voltage and current response and impedance diagram of pure R, L, and C		
	to AC supply.		
	1.5 Phasor representation of alternating quantity.		
Unit 2	Single phase AC circuits & Resonance:	08+5(T)	15
	2.0 Study of J operator.		
	2.1 Concept of complex impedance – Rectangular & polar form.		
	2.2 Series AC circuits R-L, R-C, R-L-C circuits. : Impedance, Reactance,		
	Phasor diagram, Impedance Triangle, Power Factor, Active power, Apparent		
	power, Reactive power, Power triangle, complex power (Numerical).		
	2.3 Parallel AC circuits R-L, R-C and R-L-C circuits: Admittance,		
	Susceptance, solution by admittance method, phasor diagram and complex		
	Algebra method. (Numerical)		

			1
	2.4 Series resonance - Effects of varying inductance and capacitance in		
	series RLC circuit - Selectivity- 'Q' factor. Resonance frequency -		
	Bandwidth – Half power frequencies (numerical).		
	2.5 Parallel resonance – Two branch parallel circuits, Q factor- Resonance		
	frequency-bandwidth (numerical)		
	2.6 Comparison of series and parallel resonance. RLC circuit - Selectivity-		
	'Q' factor. Resonance frequency - Bandwidth - Half power frequencies		
	(numerical).		
	2.5 Parallel resonance – Two branch parallel circuits, Q factor- Resonance		
	frequency-bandwidth (numerical)		
	2.6 Comparison of series and parallel resonance.		
Unit 3	Principles of circuit Analysis (AC and DC circuits):	06 +2(T)	10
	3.1 Mesh Analysis (Numerical)		
	3.2 Node analysis with voltage & current source. (Numerical)		
Unit 4	Network Theorems(Statement, procedure, areas of applications and	07 + 1(T)	10
	limitations)		
	4.1 Source conversion/ideal voltage and current source		
	4.2 Superposition Theorem		
	4.3 Thevenin's Theorem		
	4.4 Norton's Theorem		
	4.5 Maximum Power Transfer Theorem (Numerical of all theorems)		
Unit 5	Transient Analysis:	08 + 2(T)	10
	5.1 Introduction		
	5.2 Simple R-L Circuit supplied from a DC voltage source		
	5.3 Simple R-C circuit supplied from a DC voltage source. 5.4 Time		
	Constant. (Numerical)		
Unit 6	Laplace Transform:	08 +3(T)	10
	6.1 Definition & Properties.		
	6.2 Laplace Transform of Unit Step, Impulse, Ramp, Exponential, Sine,		
	Cosine Function.		
	6.3 Initial value and Final Value Theorem.		
	6.4 Applications of Laplace Transformations for solving differential		
	equations describing simple electrical circuits (Numerical)		
Unit 7	Two port network :	04 + 2(T)	10
	Open circuit Impedance and Short circuit Admittance parameters,		
	Transmission parameters and their Interrelations. (Simple Numerical)		
	TOTAL	45 +15(T)	70
	Contents Practical		1
Sl. No.	Skills to be developed		
1.	Intellectual Skills: i) Interpret results		
	ii) Calculate values of various components for given ci	ircuits.	
	ii) Select Instruments		
2.	Motor Skills: i) Connect the instruments properly.		
	ii) Take accurate readings.		
	,		

	iii) Draw phasor diagram and graphs.
L	ist of Laboratory Experiments: (At least Eight experiments are to be performed)
Sl. No.	Laboratory Experiments
1.	To verify Kirchoff's Current Law and Kirchoff's Voltage Law.
2.	To measure inductance of a choke using an external resistance in series with choke and by drawing
	relevant phasor diagram. Verify the result with LCR meter and calculate Q factor.
3.	To measure the current, voltage across each element of R-L-C series circuit and draw the phasor
	diagram to calculate p.f.
4.	To measure the current , voltage across each element of R-L-C parallel circuit and draw the
	phasor diagram to calculate p.f.
5.	To verify conditions for Series and Parallel Resonance.
6.	To verify following network theorems applicable to D.C. circuit.
	i) Norton's Theorem
	ii) Maximum Power Transfer Theorem
7.	To study the basics of PSpice and know the important commands.
8.	To calculate network parameters of a simple d.c. circuit using Pspice.
9.	To simulate the d.c. transient response of R-L circuit using PSpice.
	Examination scheme (Theoretical):

Examination scheme (Theoretical):

- A) Internal Examination: Marks- 20
- C) Teacher's Assessment: Marks- 10
- B) End Semester Examination: Marks-70
- (i) Marks on Attendance: Marks-05
- (ii) Assignments & Interaction: Marks- 05

Group	Unit	Objec	Total Marks		
		Note: 10 multiple choice			
		To be set Multiple Choice			
		(Twelve questions)		question	
А	1,2,3	11	A to	1	20 X 1 20
В	4,5,6,7	12	Any twenty	1	$20 \ge 1 = 20$

Group	Unit		Total Marks		
		To be set	To be answered	Marks per	
		(Ten questions)		question	
А	1,2,3	4	Any five (Taking at least	10	10 X 5 50
В	4,5,6,7	5	one from each group)	10	$10 \ge 5 = 50$

Note 1 : Teacher's assessment will be based on performance on given assignments & quizzes.

Note 2 : Assignments may be given on all the topics covered on the syllabus.

Sl.	Name of the Author	Title of the Book	Name of the Publisher
No.			
1.	Mahmood Nahvi &	Schaum's outlines Electric circuits	McGrawhill Education
	Joseph A Edminister		(India)Pvt. Ltd.
2.	A. K. Chakraborty	Introduction to network, Filters and	Dhanpat Rai & Sons

		Transmission Lines	
3.	D Roy Choudhury	Networks and Systems	Wiley Eastern Limited
4.	S P Ghosh & A K	Network Analysis & Synthesis	T.M.H. Education Pvt. Ltd.
	Chakraborty		
5.	M.S. Sukhija, T.K.	Circuits and Network	Oxford University Press
	Nagsarkar		

E X A M I N A T I O N S C H E M E (SESSIONAL)

Name of Subject: Network Analysis Laboratory Subject Code: EEE/LNA/S3 Full Marks-50

- Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Third Semester. Distribution of marks: Performance of Job – 15, Notebook – 10.
- External Assessment of 50 marks shall be held at the end of the Third Semester on the entire syllabus. One experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 15, Viva-voce 10.

Name of the course: Analog Electronics-1					
Course Code: EEE/AE1/S3	Semester: Third				
Duration: 6 months (Teaching-15 weeks +	Maximum Marks: 100 Marks				
Internal Exam-2 weeks)					
Teaching Scheme:	Examination Scheme :				
Theory: 5 contact hrs./ week	Class Test (Internal Examination): 20 Marks				
Tutorial: 2 contact hours / week	Teacher's Assessment (Attendance, Assignment & interaction): 10				
	Marks				
Practical: 3 contact hours/ week	End Semester Examination: 70 Marks				
Credit: 6 (Six)	Prctical:50 Marks				
Rationale:					

Electronics and its application play important role in our day to day life. Electronic components and circuits are used in most of the present day gadgets. Concept on analog electronics will pave easy way to understand operations and functioning of these gadgets also this subject is the basis of advance electronics. It starts with the idea of semiconductor materials, PN junction diodes which will enable the students to follow the functioning of all semiconductor devices. This is a core group subject and it develops cognitive and psychomotor skills.

Objectives:

The student will be able to-

- 1) Describe the formation of PN junction
- 2) Draw the characteristics of basic components like diode, transistor etc.
- 3) Draw and describe the basic circuits of rectifier, filter, regulator and amplifiers.
- 4) Know voltage amplifiers and its small signal analysis
- 5) Understand characteristics, operations and application of special types of diodes.

	Content (Name of topic)	Periods	Marks
	Group-A	22	
Unit 1	Semiconductor and Diode	6	
	1.1 Electrical properties of semiconductor materials, energy level diagrams		
	of conductor, semi conductor and Insulator.		
	1.2 Elemental and compound semiconductor Formation of P-Type and		
	N-Type materials and their properties. Drift and diffusion current.		
	Formation and behaviour of PN junction diode.		
	1.3 Zener diode, Zener breakdown & Avalanche Breakdown. Varactor		
	diode, Schottky diode.		
	1.4 Diode wave shaping circuits – clipper and clamper circuits		
Unit 2	Bipolar Transistor	6	
	2.1 Formation and properties of PNP and NPN Transistor		
	2.2 Transistor configurations, input and output characteristics. α , β , and γ		
	factors		
	2.3 Comparison of CB, CE, and CC configurations.		
Unit 3	Transistor Biasing	10	
	3.1 Concept of Q-point, ac and dc load lines		
	3.2 Stabilization and stability factor		
	3.3 BIASING: Base bias — Collector feedback bias — Emitter feedback bias		
	— Potential divider bias.		
	3.4 Bias compensation circuits using diode and thermistors – Current mirror		
	bias		
	Group-B	23	
Unit 4	JFET, MOSFET AND UJT	05	
	4.1 Difference between BJT, FET and MOSFET		
	4.2 Symbol and basic structure, Basic operation, VI characteristics and biasing		
	of JFET, MOSFET -depletion and enhancement		
	4.3 basic structure and Basic operation , VI characteristics of UJT, Application		
	of UJT		
	4.4 Relation between drain resistance, amplification factor and mutual		
	conductance		
Unit 5	Small Signal Transistor Amplifiers	09	
	5.1 Hybrid model and h-parameters of CB, CE & CC mode transistor		
	amplifiers - Calculation of voltage gain, current gain, power gain, input		
	and output impedance in terms of h-parameters - Comparison of the		
	three configurations.		
	5.2 Small signal FET equivalent circuits – Common source and common		
	drain amplifier – FET application as VVR, constant current source etc.		
	5.3 Operation of VMOS & CMOS and power MOSFET – Precautions in		
	handling MOSFET		
Unit 6	Multistage Amplifier	09	
	6.1 COUPLING: RC coupled – Direct coupled – Transformer-coupled amplifiers –		

	6.2 Effect on Gain & Bandwidth and Frequency response for cascading		
	6.3 Comparison of different types of cascading		
	GROUP-C	15	
Unit 7	Power Amplifier	7	
	7.1 Characteristics of Class A, Class B, Class C and Class AB amplifier		
	7.2 Difference between Voltage and Power Amplifier		
	7.3 TRANSFORMER COUPLED CLASS A POWER AMPLIFIER: Circuit operation –		
	Calculation of power, efficiency & distortion		
	7.4 CLASS B PUSH PULL AMPLIFIER: Circuit operation – Calculation of power,		
	efficiency & distortion - Crossover distortion - Advantages and		
	disadvantages - Complementary symmetry and quasi-complementary		
	symmetry Class B Push Pull Amplifier		
	7.5 Noise in amplifier circuits		
Unit 8	Rectifier and Power Supply	8	
	8.1 HALF WAVE AND FULL WAVE RECTIFIERS: Average voltage - R.M.S.		
	voltage, efficiency and ripple factor – Percentage voltage regulation		
	8.2 Function of filter circuits - Capacitor input filter - Inductive filter -		
	Π type filter – Calculation of ripple factor and average output voltage –		
	Function of bleeder resistor		
	8.3 Series and shunt regulator using transistor - IC Voltage Regulators:		
	Positive & Negative, their specifications		
	8.4 Voltage Multiplier : Voltage doublers - Tripler - Quadrupler - Their		
	applications		
	TOTAL	60	

Practicals

Skills to be developed: On satisfactory completion of the course, the students should be in a position to design power supply, amplifier and other analog circuits.

Intellectual Skills:

- 1. Interpret the results
- 2. Verify the tables

List of Practical: Any SIX(including MINI PROJECT)

Suggested List of Laboratory Experiments				
Sl. No.				
1.	To study the VI characteristics of a forward and reverse biased p-n junction Diode			
2.	To study the VI characteristics of a reverse biased Zener diode			
3.	To study the input and output characteristics and to find the h-parameters of a BJT for : —			
	(a) C-E configuration,			
	(b) C-C configuration,			
	(c) C-B configuration			
4.	To study the FET characteristics			

5.	To study the MOSFET characteristics
6.	To study the rectifier with and without capacitor filter for : —
	(a) Half-wave rectifier,
	(b) Full-wave rectifier,
	(c) Bridge rectifier
7.	To determine frequency response characteristics of RC coupled amplifier circuit and calculation of
	bandwidth, midband gain, input impedance and output impedance for :
	(a) Single-stage amplifier,
	(b) Double-stage amplifier
8.	To study the output waveform of push-pull amplifier for Class-A, Class-B & Class-AB operations
9.	To study shunt and series regulator and draw the following plots: line regulation and load regulation
10.	To study the V-I characteristics of UJT (show the cut-off, saturation and negative resistance region)
MINI PRO	IECTS

MINI PROJECTS

List of MINI PROJECTS	
1.	To design a power supply
2.	To design a single stage OR double stage amplifier.

Examination scheme (Theoretical):

- A) Internal Examination: Marks- 20B) End Semester Examination: Marks-70
- C) Teacher's Assessment: Marks- 10(i) Marks on Attendance: Marks-05
 - (ii) Assignments & Interaction: Marks- 05

Group	Unit	Objective questions			Total Marks	
		Note: 10 multiple choice				
		To be set Multiple Choice (Twelve questions)	To be answered	Marks per question		
А	1,2,3	4				
В	4,5,6	4	Any ten	1	10 X 1 = 10	
С	7,8	4				
		To be set short answer type	To be answered	Marks per		
		(Ten questions)		question		
А	1,2,3	4				
В	4,5,6	4	Any five	2	5x2=10	
С	7,8	2				

Group	Unit	Subjective questions			Total Marks
		To be set	To be answered	Marks per	
		(Ten questions)		question	
А	1,2,3	3	Any five (Taking at least		
В	4,5,6	4	one from each group)	10	10 X 5 = 50
С	5,6	3			

Note 1 : Teacher's assessment will be based on performance on given assignments & quizzes.

Note 2 : Assignments may be given on all the topics covered on the syllabus.

EXAMINATION SCHEME(SESSIONAL)

Name of Subject: Analog Electronics Laboratory Subject Code: EEE/LAE1/S3

Full Marks -50

- 1. Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Third Semester. Distribution of marks: Performance of Job 15, Notebook 10.
- External Assessment of 50 marks shall be held at the end of the Third Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 15, Viva-voce 10.

	Text Books:		
Sl. No.	Name of the Author	Title of the Book	Name of the Publisher
1.	Malvino	Electronic Principles	Tata McGraw-Hill
2.	David A. Bell	Electronic Devices and Circuits	Oxford University Press
3.	Anil K. Maini	Electronics Devices and circuits	Wiley
4.	S. Salivanan	Electronic Devices and Circuits	Tata McGraw-Hill
5.	Millman & Halkias	Electronic Devices and Circuits	Tata McGraw-Hill
6.	Chattopadhyay & Rakhshit	Electronic Fundamentals and	New Age Int
		Applications	
7.	Boylestad & Nashalsky	Electronic Devices and Circuits	Pearson
8.	Ganesh Babu	Linear Integrated Circuits	SCITECH
9.	Mottershed	Electronic Devices and Circuits	Prentice Hall of India, N. Delhi
10.	Bhargava	Basic Electronic & Linear Circuits	Tata McGraw-Hill
11.	Sahadeb	Electronic Principle	Dhanpat Rai & Sons
12.	M.L. Anand	Electronics Devices and Circuits	S.K. Kataria and sons
13.	Dr. T. Thygrajan	Fundamentals of Electrical and	SCITECH
		Electronics Engg	
14.	Subhadeep Chowdhury	Fundamentals of Electronics	Paragon Publisher
15.	Premsingh Jakhar	Basic Electronics	Dhanpat Rai Publishing Co
16.	A. Dey Roy and D Dey Roy	Basic Electronics and Laboratory Manuals	Lakshmi Prakashani

	Name of the course: Electrical &	Electronics Measuring Instrument			
Course C	ode: EEE/ EEMI /S3	Semester: Third			
Duration:	One Semester (Teaching - 15 weeks + Internal	Maximum Marks: 100 Marks			
Exam-2 w	_				
Teaching					
Theory: 3	rks				
Tutorial: r	Tutorial: nil Teacher's Assessment (Attendance,			ment &	
	interaction): 10 Marks				
Practical:	2 contact hours/ week	End Semester Examination: 70 Marks			
Credit: 4 ((Four)	Practical: 50 Marks			
Rationale	*				
Objective	es: After successful completion of this course the	e students will be able to get familiar w	ith the me	asurement	
fundamen	tals and instruments like electronic voltmeter, Mult	timeter, Q-meter, CRO, signal generator, sp	ectrum ana	lyzer etc.	
	Content (Name of	topic)	Periods	Marks	
	Group-A				
Unit 1	CLASSIFICATION OF DIFFERENT MEA	SURING INSTRUMENTS	4		
	1.1 Distinguish between absolute and secondary instruments.				
	1.2 Differentiate among indicating, integrating				
	1.3 State the different types of Measuring Instr				
	Working.				
	1.4 State the purpose and methods of obtaining				
	torques in indicating instruments.				
	1.5 State the methods of supporting moving sy				
	1.6 Describe the pointers and scales used in m	easuring instruments.			
Unit 2	CONSTRUCTION AND WORKING	OF DIFFERENT ELECTRICAL	7		
	MEASURING INSTRUMENTS				
	2.1 Describe the construction and working of	Permanent Magnet Moving Coil			
	instruments (No deduction needed).				
	2.2 Describe the construction and working of	2.2 Describe the construction and working of Moving Iron Attraction type & repulsion			
	type instruments (No deduction needed)				
	2.3 Describe the construction and working of				
	(No deduction needed)				
		2.4 Describe the construction and working of single phase Induction type energy			
	meter. (No deduction needed). Knowledge of Meter Constant and common error				
	adjustments for 1- phase energy meter. Phantom loading				
	2.5 Principle of rectifier type instrument – Ave				
Unit 3	MEASUREMENT OF VOLTAGE, CURRENT AND P		6		
	3.1 Measurement of voltage and current, use o	f voltmeter and ammeter, extension of			
	range, simple problems.				
	3.2 Method of measuring power with wattmeter	-			
	3.2. Measurement of 3-Phase Power and powe	r factor using 2-Wattmeters method.			

	Simple problems					
	3.3 CT & PT: Use, specification, Precaution					
Unit 4	MEASUREMENT OF RESISTANCE, INDUCTANCE, CAPACITANCE AND FREQUENCY :	8				
	DC AND AC BRIDGES					
	DC Wheatstone Bridge and its application – AC bridge-balance – Detection and source					
	of excitation – Maxwell's induction bridge – Hay's bridge – Schering bridge – Wien					
	Bridge (frequency measurement).					
	Group – B					
Unit 5	ELECTRONIC INSTRUMENTS	12				
	5.1 Working principle of D igital M ulti M eter – successive approximation type, working and specification.					
	5.2 Digital display devices (LED, seven segment only), Concept of 3 ½, 4 ½ digit.					
	5.3 Ramp type digital voltmeter- working principle and specification					
	5.4 Digital frequency meter.					
	5.5 Signal generator – specifications and uses of: Audio & Radio Frequency Signal Generator					
	5.6 C.R.O. – Block diagram representation & operation. Constructional features of CRT, Understanding dual trace oscilloscope.					
	5.7 Bolometer – Method of power measurement – Balance Bridge Bolometer					
Unit 6	TRANSDUCER	8				
	6.1 Basic concept of Transducers and its applications					
	6.2 Classification of Transducers					
	6.3 Basic working principle and application area (no deduction) of resistive					
	(Potentiometer, strain gage), capacitive, inductive (LVDT), Hall effect transducer.					
	TOTAL	4				
		5				
	Contents Practical					
	Suggested List of Laboratory Experiments					
	Group A (Any six)					
51. No.						
1.	To study the operation and to use:					
	(a) Multimeter (Analog and Digital), and,					
	(b) Oscilloscope (Understand front panel control, observe voltage, frequency, phase differ	rence)				
2.	To study and use RLC meter and measure R,L,C,and Q factor					
3.	To Study constructional feature of various types of instruments e.g. PMMC, MI, electrodynamometer and induction etc.					
4.	To measure voltage, current and power in a single phase circuit using voltmeter, ammeter, and wattmeter.					
5.	Measure 3 phase power using two wattmeter method.					
6.	To connect a single phase energy meter and measure the energy consumption. Also study the meter constant.					

7.	To measure L & Q by Maxwell Bridge
8.	To measure the unknown capacitance by Schering bridge
9.	To measure the unknown frequency by Wein Bridge.
	Group B (Any four)
10.	Study of different Lissajous pattern and determination of phase and frequency of unknown waveform
11.	To study the operation and to use:
	(a) AF signal generator; and, (b) RF signal generator
12.	To study the operation and to use frequency counter
13.	To study the operation and to use function generator
14.	To measure Linear displacement by LVDT & plot characteristics
15.	To measure displacement by Strain gauge & plot characteristics

Examination scheme (Theoretical):

A). Internal Examination: Marks- 20 C). Teacher's Assessment, attendance and interaction/ quiz: Marks- 10

Group	Unit	Ob	jective questions		Total
		Note: 10 multiple choic	ce and 5 short answer typ	pe questions	Marks
		To be set Multiple Choice	To be answered	Marks per	
		(Twelve questions)		question	
А	1,2,3,4	7	•		10 X 1 =
В	5,6	5	Any ten	1	10
		To be set short answer type	To be answered	Marks per	
		(Eight questions)		question	
А	1,2,3,4	5			
В	5,6	3	Any five	2	5x2=10
		Subjective question	s		
		Note: 5 questions each of 10 n	narks each		
		To be set	To be answered	Marks per	Total
				question	Marks
А	1,2,3,4	5	3	10	30
В	5,6	4	2	10	20

B). End Semester Examination: Marks-70

Note 1 : Teacher's assessment will be based on performance on given assignments & quizzes.

Note 2 : Assignments may be given on all the topics covered on the syllabus.

Sl.	Name of the	Title of the Book	Name of the
No.	Author		Publisher
1.	Kalsi	Electronic Instrumentation	Tata McGraw-Hill
2.	A.K. Sawhney	A Course in Electrical and Electronic Measurement and Instrumentation	Dhanpat Rai & Sons
3.	David Bell	Electronic Instrumentation and Measurement	Oxford University Press
4.	RK Rajput	Electronics Measurements & Instrumentation	S Chand

5.	Oliver Cage	Electronic Measurement and Instrumentation	McGraw Hill
6.	Wolf and Smith	Students Reference Manual for Electronic	Prentice Hall of India
		Instrumentation Lab	
7.	J B Gupta	Electrical & Electronics Measurement	SK Kataria & Sons
8.	Brownes	Digital Instruments	Tata McGraw Hills
9.	U Sinha	Electrical & Electronics Measurements and	
		Instrumentation	
10.	Cooper	Electronic Measurement and Measurement	Prentice Hall of India
		Technique	

Name of	the course: C Programming
Course Code: EEE/ CPGM/ S3	Semester: Third
Duration: One Semester (Teaching-15 weeks	Maximum Marks: 50
+ Internal Exam-2 weeks)	
Teaching Scheme:	Examination Scheme
Theory: 2 contact hrs./ week	Class Test (Internal Examination): 10 Marks
Tutorial: Nil	Teacher's Assessment (Attendance, Assignment & interaction):
	05 Marks
Practical: 1 contact hours/ week	End Semester Examination: 35 Marks
Credit: 3 (Three)	Practical: 50 Marks

Ration	ale:
S1.	
No.	
1.	Programming concept finds utility in understanding of high-level language, low-level language and the
	subjects like Microprocessor, Microcontroller, PLC etc. This subject covers from the basic concept of C to
	the arrays and function in C. This subject will act as "programming concept developer" for students. It
	will also become helpful to understand various application Software such as Matlab, Pspice etc.
Object	ive:
S1.	The students will be able to:
No.	
1.	Define program and programming
2.	Briefly understand compiler, interpreter, linker and loader function.
3.	Understand algorithm and learn the different ways of stating algorithms.
4.	Understand the basic structure of a program in C
5.	Learn the data types, variables, constants, operators etc.
6.	Get to know the input and output streams that exist in C to carry out the input output task.
7.	Learn about decision type control construct and looping type control constructs in C.
8.	Learn about one dimensional array.
9.	Understand what a function is and how its use benefits a program

Pre-R	equisite:		
S1.			
No.			
1.	Basic units of computer system		
	Contents (Theory)	Periods	Marks
	Group –A	1 0110 005	
Unit: 1		04	
e int. i	1.1 CONCEPT OF PROGRAMMING LANGUAGES AND EXAMPLES	01	
	1.2 Algorithm and flowcharts		
	1.3 Compiler, Interpreter, Loader, and Linker		
	1.4 Source Code and Object Code		
	1.5 Place of C in computer language		
	1.6 Basic Structure of C		
Unit: 2		08	
0 1110 2	2.1 3. C character set, tokens, constants, variables. keywords	00	
	2.2 PRIMARY DATA TYPES – their equivalent keywords and declaration		
	2.3 OPERATORS: Arithmetic – Increment – Decrement – Relational –		
	Logical – Conditional – Bit Wise		
	2.4 Assignment statement- C expressions-operator precedence		
	2.5 UNFORMATTED I/O FUNCTIONS: getchar () – getch () – putchar () –		
	putch () – gets () –puts()		
	FORMATTED CONSOLE I/O: printf() – scanf()		
Unit: 3		06	
e int. e	5.1 Introduction	00	
	5.2 IF-ELSE statement		
	5.3 Looping : FOR, WHILE and DO-WHILE statements		
	5.4 BREAK, CONTINUE and GOTO statements.		
	5.5 Simple Program		
	Group-B		
Unit 4	Arrays & Pointers	08	
enit i	6.1 Introduction	00	
	6.2 Declaration and initialization of Array		
	6.3 Accessing of array elements and other allowed operations.		
	6.4 Simple program with a one dimensional array		
	6.5 Understanding pointers, declaring and accessing pointer ,'&' and '*'		
	operators		
	6.6 Pointer expressions – Pointer assignments – Pointer arithmetic		
Unit 5	Function	06	
	7.1 The concepts of functions		
	7.2 Using functions : i) Function Declaration, ii) Function Definition, iii)		
	Function Call		
	7.3 Simple program		
	Total	32	

	Contents (Practical)
S1.	Skills to be developed
No.	
1.	Intellectual Skills:
	Practical:
	Skills to be developed:
	1. Use of programming language constructs in program implementation.
	2. Improvement of Logical thinking capability
	3. To be able to apply different logics to solve given problem.
	4. To be able to write program using different implementations for the same problem
	5. Study different types of errors as syntax semantic, fatal, linker & logical
	6. Debugging of programs
	7. Understanding different steps to develop program such as
	 Problem definition
	 Analysis
	 Design of logic
	 Coding
	 Testing
	 Modifications and error corrections of programming language
2.	Motor Skills:
	i) Operate various parts of computer properly.
	ii) Problem solving skills.
	iii) Draw Flow charts
	f Laboratory Experiments:
S1.	
No.	
	Write algorithm, Draw Flow chart, and Write programming codes in C on following topics
1.	To find the sum and identify the greater number between any two numbers.
2.	To interchange the numeric values of two variables.
3.	Take three sides of a triangle as input and check whether the triangle can be drawn or not. If possible,
	classify the triangle as equilateral, isosceles, or scalene
4.	To test whether the given character is vowel or not.
5.	To find sum of the digits of an integer .
6.	To find the roots of a quadratic equation.
7.	To check whether an input number is palindrome or not.
8.	To find the G.C.D and L.C.M of two numbers.
9.	To find the factorial of given number.
10.	To find the sum of n natural numbers.
11	To accept 10 numbers and make the average of the numbers
12	To accept 10 elements and sort them in ascending or descending order.
13.	To find the summation of three numbers using function.
14	To find the maximum between two numbers using function

Examination Scheme (theoretical):

A) Internal Examination: Marks- 10

C) Teacher's Assessment: Marks- 5

- B) End Semester Examination: Marks-35
- (i) Marks on Attendance
- (ii) Assignments & Interaction

Group	Unit	Obje	ctive questions		Total Marks
		Note: 10 multiple choice	and 5 short answer	type questions	
		To be set Multiple Choice (Ten questions)	To be answered	Marks per question	
A B	1,2,3 4,5	6 4	Any six	1	6 X 1 = 6
	1,0	To be set short answer type (eight questions)	To be answered	Marks per question	
А	1,2,3	3			
В	4,5	3	Any four	1	4x1=4

Group	UNIT		Subjective Questions		Total Marks
		To be set	To be answered	Marks per	
		(Ten questions)		question	
А	1,2,3	5	Any five (Taking at least	5	5 X 5 = 25
В	5,6	3	two from each group)	5	$3 \times 5 = 25$

Note 1 : Teacher's assessment will be based on performance on given assignments & quizzes.

Note 2 : Assignments may be given on all the topics covered on the syllabus.

EXAMINATION SCHEME(SESSIONAL)

Name of Subject: Computer Programming Language LaboratoryFull Marks - 50Subject Code: EEE/LCPGM/S3

- Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Third Semester. Distribution of marks: Performance of Job 15, Notebook 10.
- External Assessment of 50 marks shall be held at the end of the Third Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 15, Viva-voce 15.

Text Boo	ks:		
Sl. No.	Name of the Author	Title of the book	Name of the Publisher
1.	Balgurusamy	Programming in 'C'	Tata Mc-Graw Hill
2.	Kanetkar	Let's 'C'	BPB
3.	Herbert Shieldt	Complete reference C	Tata Mc-Graw Hill

4.	Kernigham & Ritchie	The C Programming Language	Mc-Graw Hill
5.	H. Schieldt	C Made Easy	McGraw Hill
6.	T. Jeyapoovan	A first course in programming with C	Vikash Publishing House
7.	E Balaguruswamy	Programming in ANSI C (edition 2.1)	Tata McGraw-Hill

1. Websites:

- http://cplus.about.com/od/beginnerctutoriali/a/blctut.htm
- <u>http://computer.howstuffworks.com/c.htm</u>
- Objective questions:
 - 1. http://www.indiastudycenter.com/studyguides/sc/objtest/default.asp

Demo lectures with power point presentations using LCD projector should be arranged to develop programming concepts of students.

Name of the o	course: Electrical Machine-1
Course Code: EEE/EM1/S3	Semester: Third
Duration: One semester (Teaching-15 weeks +	Maximum Marks: 100
Internal Exam-2 weeks)	
Teaching Scheme:	Examination Scheme :
Theory: 2 contact hrs./ week	Internal Examination (: 20 Marks
Tutorial:	Teacher's Assessment (Attendance, Assignment & interaction):
	10 Marks
Practical: 1 contact hours/ week	End Semester Examination: 70 Marks
Credit: 3	Practical:50
Rationale:	

This subject is restricted to second year diploma in Electrical & Electronics. Technicians / supervisors from all branches of engineering. They are expected to have some basic knowledge of major electrical equipments. Also the technicians working in different engineering fields have to deal with various types of electrical drives and equipment. Hence, it is necessary to study electric circuits, different types of electrical drives, their principles and working characteristics.

This subject covers analysis of ac and dc networks, working principles of commonly used ac and dc motors and their characteristics. The basic concepts studied in this subject will be very useful for understanding of other higher level subjects in further study.

Objectives:

The student will be able to-

- 1. Know importance, working and construction of single phase transformer
- 2. Explain construction, working, performance and applications of various types of DC Genrators and DC motors
- 3. Understand the idea of Polyphase circuits and star-delta connections
- 4. Gain principle of induction motor and construction
- 5. Identify and describe electrical hazards and precautions that should be taken to avoid injury in the workplace constituting electrical machine. Concept of electrical earthing.

	Content (Name of topic)	Periods	Marks
Unit 1	1. GENERAL INTRODUCTION OF ROTATING MACHINE	02	04
	Mechanism of Electro-Mechanical energy conversion for generator & motor mode.		
Unit 2	2. D.C. Generator	10	12
	2.1 Working principles, Construction & Types of dc generator.		
	2.2 Function of Interpole & Compensating winding.		
	2.3 Armature winding types – Concept of Lap & Wave winding.		
	2.4 E.m.f equation, Methods of building up of e.m.f, Significance of Critical		
	resistance and Critical speed (Numerical).		
	2.5 Concept of flux distribution in DC machine.		
	2.6 Armature reaction in DC machine (Concept only).		
	2.7 Commutation method, Concept of reactance voltage.		
	2.8 Applications of different types of D.C. generator.		
Unit 3	3. D.C. Motor	10	12
	3.1 Working principles, Back e.m.f., Speed and Torque equation. (Numerical)		
	3.2 Characteristics of Series, Shunt & Compound motors.		
	3.3 Methods of speed control of DC motors. (Numerical)		
	3.4 Starting methods of DC motor – 3-point & 4-point starter.		
	3.5 Losses and Efficiency (Numerical).		
	3.6 Braking methods of DC motor – Regenerative braking, Counter current		
	braking, Dynamic braking.		
	3.7 Applications of different types of DC motor.		
Unit 4	4. Single phase Transformer	17	30
	4.1 Principle of operation.		
	4.2 E.m.f. equation, Transformation ratio, KVA rating. (Numerical)		
	4.3 Types of transformer, Core construction & different parts of transformer and		
	their function.		
	4.4 Concept of ideal transformer.		
	4.5 Different types of cooling methods (in brief).		
	4.6 Performance under no-load condition with phasor diagram. (Numerical)		
	4.7 Performance under load condition with phasor diagram. (Numerical)		
	4.8 Equivalent circuit. (Numerical)		
	4.9 Per unit representation of impedance.		
	4.10 Voltage Regulation at upf, lagging pf & leading pf. (Numerical)		
	4.11 Polarity test of transformer.		
	4.12 O.C. and S.C. tests – Estimation of losses & Equivalent circuit parameters.		
	(Numerical)		
	4.13 Losses, Efficiency, Maximum efficiency, All-day efficiency. (Numerical)		
	4.14 Parallel operation of single phase transformers. (Numerical)		
	4.15 Tap-changing methods, Tap changers – Off load & On-load type.		
	4.16 Principles of single-phase Auto transformer – step-up & step-down,		
	Comparison of weight, copper loss with 2-winding transformer. (Numerical)		
	4.17 Applications of 2-winding transformer & Auto transformer.		

Unit 5	5. Three phase Transforme	er:	09	12
	5.1 Types of three phase transform	mer.		
	5.2 Construction of 3-phase trans	former – Core & different types of Winding.		
	5.3 Connections of 3-phase trans	former – Vector grouping (classification &		
	necessity).			
	5.4 Concept of Tertiary winding a	and its utility.		
	5.5 Three-phase Auto transforme	r – working principle, connection diagram,		
	Step-up & Step-down autotransfo	ormer. (Numerical)		
	5.6 Comparison of Autotransform	her with two-winding transformer, practical		
	application of autotransformer.			
	5.7 Scott-connected transformer -	- working principle, connection diagram, prac	ctical	
	application.			
	5.8 Open delta connection – work	king principle, connection diagram, practical		
	application.			
	5.9 Applications of 3-phase trans	former.		
	TOTAL		48	70
Practica	al:			
Skills to	be developed:			
Intellect	tual skills:			
1. Analy	tical skills.			
-	tical skills. fication skills.			
-				
-	fication skills.			
2. Identi Motor s	fication skills.			
 Identi Motor s Meass 	fication skills. kills:			
 Identi Motor s Meass 	fication skills. kills: urement (of parameters) skills.			
 Identi Motor s Measu Conno 	fication skills. kills: urement (of parameters) skills.			
 Identi Motor s Measu Conno 	fication skills. kills: urement (of parameters) skills. ection (of machine terminals) skills.			
 Identi Motor s Measu Conno 	fication skills. kills: urement (of parameters) skills. ection (of machine terminals) skills.	DC Machine		
 Identi Motor s Mease Conno List of I 	fication skills. kills: urement (of parameters) skills. ection (of machine terminals) skills. Practical: Study the construction features of D	DC Machine notor above normal speed & draw the speed of	characteristics.	
 Identi Motor s Measurement Conno List of I 1. 	fication skills. kills: urement (of parameters) skills. ection (of machine terminals) skills. Practical: Study the construction features of D To control the speed of D.C. shunt 1	notor above normal speed & draw the speed of		
2. Identi Motor s 1. Measu 2. Conno List of I 1. 2.	fication skills. kills: urement (of parameters) skills. ection (of machine terminals) skills. Practical: Study the construction features of D To control the speed of D.C. shunt 1 To control the speed of D.C. shunt 1	motor above normal speed & draw the speed of notor below normal speed & draw the speed of		
2. Identi Motor s 1. Measu 2. Conno List of I 1. 2. 3. 4.	fication skills. kills: urement (of parameters) skills. ection (of machine terminals) skills. Practical: Study the construction features of D To control the speed of D.C. shunt 1 To control the speed of D.C. shunt 1 Study of three point and four point 3	motor above normal speed & draw the speed of motor below normal speed & draw the speed of starter	characteristics.	O.C. test (ii
2. Identi Motor s 1. Measu 2. Conno List of I 1. 2. 3.	fication skills. kills: urement (of parameters) skills. ection (of machine terminals) skills. Practical: Study the construction features of D To control the speed of D.C. shunt n To control the speed of D.C. shunt n Study of three point and four point s To determine equivalent circuit pa	motor above normal speed & draw the speed of notor below normal speed & draw the speed of	characteristics.	O.C. test (ii
2. Identi Motor s 1. Measu 2. Conno List of I 1. 2. 3. 4.	fication skills. kills: urement (of parameters) skills. ection (of machine terminals) skills. Practical: Study the construction features of D To control the speed of D.C. shunt 1 To control the speed of D.C. shunt 1 Study of three point and four point 3	motor above normal speed & draw the speed of motor below normal speed & draw the speed of starter	characteristics.	O.C. test (ii
2. Identi Motor s 1. Measu 2. Conno List of I 1. 2. 3. 4.	fication skills. kills: urement (of parameters) skills. ection (of machine terminals) skills. Practical: Study the construction features of D To control the speed of D.C. shunt 1 To control the speed of D.C. shunt 1 Study of three point and four point s To determine equivalent circuit pa S.C. test.	motor above normal speed & draw the speed of motor below normal speed & draw the speed of starter	characteristics.	O.C. test (ii
2. Identi Motor s 1. Measu 2. Conno List of I 1. 2. 3. 4. 5. Text boo	fication skills. kills: urement (of parameters) skills. ection (of machine terminals) skills. Practical: Study the construction features of D To control the speed of D.C. shunt n To control the speed of D.C. shunt n Study of three point and four point s To determine equivalent circuit pa S.C. test.	motor above normal speed & draw the speed of motor below normal speed & draw the speed of starter mameters of single-phase transformer by pe	characteristics.	
2. Identi Motor s 1. Measu 2. Conno List of I 1. 2. 3. 4. 5.	fication skills. kills: urement (of parameters) skills. ection (of machine terminals) skills. Practical: Study the construction features of D To control the speed of D.C. shunt n To control the speed of D.C. shunt n Study of three point and four point s To determine equivalent circuit pa S.C. test.	motor above normal speed & draw the speed of motor below normal speed & draw the speed of starter mameters of single-phase transformer by pe	characteristics.	O.C. test (ii)
2. Identi Motor s 1. Measu 2. Conno List of I 1. 2. 3. 4. 5. Text boo Sl. No.	fication skills. kills: urement (of parameters) skills. ection (of machine terminals) skills. Practical: Study the construction features of D To control the speed of D.C. shunt 1 To control the speed of D.C. shunt 1 Study of three point and four point 3 To determine equivalent circuit pa S.C. test. bks: Titles of Book	motor above normal speed & draw the speed of motor below normal speed & draw the speed of starter arameters of single-phase transformer by per Name of Author Name	characteristics. rforming (i) ame of Publish	er
2. Identi Motor s 1. Measu 2. Conno List of I 1. 2. 3. 4. 5. Text boo Sl. No. 1.	fication skills. kills: urement (of parameters) skills. ection (of machine terminals) skills. Practical: Study the construction features of D To control the speed of D.C. shunt n To control the speed of D.C. shunt n Study of three point and four point s To determine equivalent circuit pa S.C. test. bks: Titles of Book Electrical Machines	motor above normal speed & draw the speed of motor below normal speed & draw the speed of starter trameters of single-phase transformer by personal Name of Author Name S.K.Bhattacharya T.J.	characteristics. rforming (i) ame of Publish M.H Publishing	er
2. Identi Motor s 1. Measu 2. Conno List of I 1. 2. 3. 4. 5. Text boo Sl. No.	fication skills. kills: urement (of parameters) skills. ection (of machine terminals) skills. Practical: Study the construction features of D To control the speed of D.C. shunt 1 To control the speed of D.C. shunt 1 Study of three point and four point 3 To determine equivalent circuit pa S.C. test. bks: Titles of Book	motor above normal speed & draw the speed of motor below normal speed & draw the speed of starter trameters of single-phase transformer by per Name of Author Na S.K.Bhattacharya T.I. B.L.Thereja S.4	characteristics. rforming (i) ame of Publish	er g Co. Ltd.

5.	Principles of Electrical Machines	V.K.Mehta, Rohit Mehta	S. Chand
6.	Electrical Machinery	P.S.Bhimbra	Khanna Publisher
7.	Electrical Machines	M.N.Bandyopadhyay	P.H.I. Pvt. Ltd.
8.	Electrical Machines	Ashfaq Husain	Dhanpat Rai & Co.
9.	Principles of Electrical Machines and Power Electronics	P.C.Sen	Wiley India
10.	Fundamentals of Electrical Machines	B.R.Gupta & V.Singhal	New Age Publisher
11.	Electrical Machines	Nagrath & Kothari	T.M.Hill
12.	Electrical Technology	H.Cotton	C.B.S. Publisher New Delhi
13.	Electrical Machines	Smarajit Ghosh	Pearson
14.	Electrical Technology	E.Huges	ELBS
15.	Electrical Technology	H. Cotton	Pitman
16.	ACourseinElectrical&ElectronicsMeasurement&Instrumentation	A.K.Sawhney	Dhanpat Rai & Sons

EXAMINATION SCHEME (THEORETICAL)

A) Internal Examination: Marks- 10

C) Teacher's Assessment: Marks- 5

- B) End Semester Examination: Marks-35
- (i) Marks on Attendance
 - (ii) Assignments & Interaction

Group	Unit	Objective questions			Total Marks
		Note: 10 multiple choice and 5 short answer type questions			
		To be set Multiple Choice	To be answered	Marks per	
		(Ten questions)		question	
А	1,2	4	A	1	
В	3,4,5,6	6	Any six	1	6 X 1 = 6
		To be set short answer type	To be answered	Marks per	
		(eight questions)		question	
А	1,2	3			
В	3,4,5,6	3	Any four	1	4x1=4

Group	UNIT	Subjective Questions			Total Marks
		To be set Multiple	To be answered	Marks per	
		Choice		question	
		(Ten questions)			
А	1,2	3	Any five (Taking at least		5 X 5 = 25
В	3,4,5,6	3	two from each group)	5	$3 \land 3 = 23$

E X A M I N A T I O N S C H E M E (SESSIONAL)

Subject: Electrical Machine Laboratory Code: EEE/LEM/S3

Full Marks-50

- Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Third Semester. Distribution of marks: Performance of Job – 15, Notebook – 10.
- External Assessment of 50 marks shall be held at the end of the Third Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 15, Viva-voce 10.

Name of the course: Electrical & Electronics Workshop				
Course Code: EE/WS/S3	Semester: Third			
Duration: 17 weeks (Teaching-15 weeks +	Maximum Marks: 50			
Internal Exam-2 weeks)				
Teaching Scheme:	Examination Scheme :			
Theory: Nil	Internal Teachers' Assessment: 25 Marks			
Tutorial: Nil	External Teachers' Assessment: 25 Marks			
Practical: 2 contact hours/ week	End Semester Examination: Nil			
Credit: 1				
Rationale:				
A technician should also have the practical skills regarding wiring, in order to provide him/her the various ways				
techniques of fault finding while working on the shop floor. These skills will be developed when he/she actually				
performs the work.				
Objectives:				
Identify various electrical and electronics accessories.				
• Draw & understand the wiring diagrams				

- Draw & understand the wiring diagrams
- Prepare schedule of material
- Use methods of wiring, testing and fabrication

Pre-Requisite

- Studies of different types of wires, switches, components and circuits.
- Protection for safety of electrical wiring installation as per I.S.
- Protection against electric shock, thermal effect, over-current, over-voltage, under-voltage and against a measure of isolation and switching of electrical and electronics circuits.

Full Marks-50

Content (Name of topic)			Marks	
	Group-A			
Suggestee	l list of Practicals /Exercises (practice at least three from each group, equal			
weightage	e to be given for both Group - A and Group - B)			
	Review of shop talks and safety precautions for both the basic electrical and			
	electronics workshop practices			
Group A	Electrical Workshop			
1.	To study MCB, ELCB and RCCB and to know their applications.			
2.	To Study the constructional features and windings of different types of D.C.			
	Machines To demonstrate the D.C. motor starters			
3.	To dismantle and assemble of AC motors and study the specifications of major			
	components.			
4.	To test a battery for its charged and discharged condition and to make connections			
	for charging and obtain its capacity.			
5.	To measure insulation resistance using Megger.			
Group B	Electronics Workshop			
6.	Testing of following semiconductor devices using test equipments:			
	Diode, Zener diode, Transistor (NPN & PNP), Thyristor, Diac, Triac, UJT, JFET,			
	IGBT, MOSFET			
7.	Identification, testing using IC tester and utilization of analog and digital (both			
	TTL and MOS ICs).			
8.	To be familiar with the following basic instruments: — Analog and Digital			
	Multimeter, Oscilloscope, Power supply (single / dual channel), Function			
	generator, LCR Meter			
9.	To construct a $\pm 12V$ power supply on Bread board and observe the output			
	waveform by CRO with and without filter circuit. Also observe the output voltage			
	using IC regulator 78XX & 79XX and fabricate the same using Vero board,			
	necessary indicator, fuse etc., in a cabinet.			

EXAMINATION SCHEME (SESSIONAL)

Subject: Electrical & Electronics Workshop Code: EEE/WS/S3

- Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Third Semester. Distribution of marks: Performance of Job – 15, Notebook – 10.
- External Assessment of 50 marks shall be held at the end of the Third Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 15, Viva-voce 10.

Name of the course: Professional Practice-I				
Course Code: EEE/PP-II/S3	Semester: Third			
Duration: 17 weeks (Teaching-15 weeks +	Maximum Marks: 50			
Internal Exam-2 weeks)				
Teaching Scheme:	Examination Scheme :			
Theory: Nil	Internal Teachers' Assessment: 50 Marks			
Tutorial:				
Practical: 2 contact hours/ week	End Semester Examination: Nil			
Credit: 2				
Rationale:				

In addition to the exposure both in theoretical and practical from an academic institution, it is desired that student should be familiar with the present day industry working environment and understand the emerging technologies used in these organisation. Due to globalization and competition in the industrial and service sectors, acquiring overall knowledge will give student an better opportunity for placement facility and best fit in their new working environment.

In the process of selection, normal practice adopted is to see general confidence, positive attitude and ability to communicate, in addition to basic technological concepts.

The purpose of introducing professional practices is to provide opportunity to students to undergo activities which will enable them to develop confidence. Industrial visits, expert lectures, seminars on technical topics and group discussion are planned in a semester so that there will be increased participation of students in learning process.

Objectives:

The student will be able to-

Student will be able to:

- 1. Acquire information from different sources.
- 2. Enhance creative skills
- 3. Prepare notes for given topic.
- 4. Present given topic in a seminar.
- 5. Interact with peers to share thoughts.
- 6. Understand software for designing electronics circuits
- 7. Acquire knowledge of designing and maintenance of Electronics circuits, PCB and relevant software
- 8. Acquire knowledge on Open Source Software and its utility
- 9. Understand application of technologies in industry scenario.
- 10. Prepare a report on industrial visit, expert lecture.

Content (Name of topic)			Marks
Group-A			
Unit 1	Field Visits	12	
	Structured field visits (minimum three) be arranged and report of the same		
	should be submitted by the individual student, to form a part of the term work.		
	The field visits may be arranged in the following areas / industries:		
	i) Power supply/UPS/SMPS/Inverter manufacturing unit		

	ii)	Electrical/Electronics Instruments calibration laboratories		
	iii)	Residential building for Electronic security systems		
	iv)	Small hydro power station		
	v)	Wind mill		
Unit 2	Lectures b	by Professional / Industrial Expert to be organized from of the	10	
	following	areas (any four)		
	i)	Non conventional energy sources		
	ii)	Open Source Software- an introduction and Practice session		
		with Libre Office		
		Introduction to Libre Office Writer		
		Introduction to Libre Office Calc		
		Introduction to Libre Office Impress		
		Introduction to Libre Office Base		
		• Introduction to Libre Office Math		
		Introduction to Libre Office Draw		
	iii)	OSCAD - Open Source EDA tool for circuit design, simulation		
		and PCB design.		
	iv)	Water pollution control		
	v)	Mobile communication		
	vi)	Various government schemes such as EGS,		
	vii)	Industrial hygiene.		
	viii)	Recent innovations of electronic gadgets in daily life		
	Seminar :		10	
	Any one s	seminar on the topics suggested below:		
	Students (Group of 4 to 5 students) has to search /collect information about the		
	topic throu	gh literature survey, visits and discussions with experts / concerned		
	persons:			
	Students w	ill have to submit a report of about 10 pages and deliver a seminar for		
	10 minutes	3.		
	1. W	/ater supply schemes/Problems of drinking water in rural area		
	2. Pi	roblems related to traffic control		
	3. E	lectronic rolling display		
	4. E	lectronic systems used in Multiplex		
	5. Pa	ani Panchayat Yojana for equal distribution of water		
	6. A	ny other suitable topic		
	TOTAL		32	

Reference book for OSCAD

Sl No.	Titles of Book	Name of Author	Name of Publisher
1.	OSCAD	Yogesh Save, Rakhi R, Shambhulingayyan N.D.,	Shroff Publisher & Distributor
		Rupak M Rokade, Ambikeswar Srivastava, Manas	
		Ranjan Das, Lavita Pereira, Sachin Patil, Srikant	
		Patnaik, Kannan M. Moudgalya	

Website: (i) http://oscad.in

(ii) http:/spoken-tutorial.org of Indian Institute of Technology, Bombay (for more detail about Open source Software such as Libre Office, OSCAD and the like) which is a part of National Mission on Education through ICT, MHRD Govt. of India.

Demo lectures with power point presentations using LCD projector should be arranged for developing concepts on various topics.