PART — II
3rd Semester
FINAL DRAFT FOR
CURRICULAR STRUCTURE
AND SYLLABI OF
FULL-TIME DIPLOMA COURSES IN
ENGINEERING & TECHNOLOGY



## WEST BENGAL STATE COUNCIL OF TECHNICAL EDUCATION

(A Statutory Body under West Bengal Act XXI of 1995) "Kolkata Karigori Bhavan", 2nd Floor, 110 S. N. Banerjee Road, Kolkata -700013

Further suggestion may be submitted to the syllabus committee. List of the coordinators for the branch of Diploma in Electronics & Tele Communication Engineering are:

Sri Sandip Kundu
 Dr. Bijita Biswas
 Dr. Susmita Sen
 Mobile:9830272981
 Dr. Susmita Sen
 Mobile:9433772629
 Dr. Marina Dan
 Mobile:9831115387
 Sri Anup Sarkar
 Mobile:9433521132

➤ Sri Ashim Kumar Manna Mobile:8902701784 <u>ashimmanna@rediffmail.com</u>

#### WEST BENGAL STATE COUNCIL OF TECHNICAL EDUCATION

#### TEACHING AND EXAMINATION SCHEME FOR DIPLOMA IN ENGINEERING COURSES

COURSE NAME: FULL TIME DIPLOMA IN ELECTRONICS & TELECOMMUNICATION ENGINEERING

**DURATION OF COURSE: 6 SEMESTERS** 

SEMESTER: THIRD

### BRANCH: ELECTRONICS & TELECOMMUNICATION ENGINEERING

| SR. | SUBJECT                                  | CREDITS | F  | PERIO | DS | EVALUATION SCHEME |                    |       |     |     |     |                |
|-----|------------------------------------------|---------|----|-------|----|-------------------|--------------------|-------|-----|-----|-----|----------------|
| NO. |                                          |         | L  | TU    | PR |                   | INTERNAL<br>SCHEME |       |     |     | @TW | Total<br>Marks |
|     |                                          |         |    |       |    | TA                | CT                 | Total |     |     |     | Marks          |
| 1.  | Network Analysis                         | 3       | 4  | -     |    | 10                | 20                 | 30    | 70  | -   | -   | 100            |
| 2.  | Analog Electronics -I                    | 4       | 4  | -     | -  | 10                | 20                 | 30    | 70  | -   | -   | 100            |
| 3.  | Digital Electronics                      | 3       | 4  | -     | -  | 10                | 20                 | 30    | 70  | -   | -   | 100            |
| 4.  | Electrical Machine                       | 2       | 2  | -     | -  | 5                 | 10                 | 15    | 35  | -   | -   | 50             |
| 5.  | Computer Programming Language            | 2       | 2  | -     | -  | 5                 | 10                 | 15    | 35  | -   | -   | 50             |
| 6.  | Network Analysis Laboratory              | 2       | -  | -     | 3  | -                 | -                  | -     | -   | 75  | -   | 75             |
| 7.  | Analog Electronics Laboratory            | 2       | -  | -     | 3  | -                 | -                  | -     | -   | 100 | -   | 100            |
| 8.  | Digital Electronics Laboratory           | 2       | -  | -     | 3  | -                 | -                  | -     | -   | 75  | -   | 75             |
| 9.  | Electrical Machine Laboratory            | 1       | -  | -     | 2  | -                 | -                  | -     | -   | 50  | -   | 50             |
| 10. | Computer Programming Language Laboratory | 1       | -  | -     | 2  | -                 | -                  |       | -   | 50  | -   | 50             |
| 11. | Professional Practice - I                | 2       | -  | -     | 3  | -                 | -                  | -     | -   | -   | 50  | 50             |
| 12. | Environmental Studies                    | -       | 1  | -     | -  | -                 | -                  | -     | -   | -   | 50  | -              |
|     | Total                                    | 24      | 17 | -     | 16 | 40                | 80                 | 120   | 280 | 350 | 50  | 800            |

STUDENT CONTACT HOURS PER WEEK:33 hrs, (Teaching-15 weeks + Internal Exam-2 weeks )

### THEORY AND PRACTICAL PERIODS OF 60 MINUTES EACH

ABBREVIATIONS: L- Lecture, TU- Tutorials, PR- Practical, TA- Teachers Assessment, CT- Class Test, ESE- End Semester Exam, @TW-Term Work

TA (Teacher's assessment) = 10 marks: Attendance & surprise quizzes = 5 marks and Assignment & group discussion = 5 marks for CT= 20 Marks.

TA (Teacher's assessment) = 5 marks: Attendance & surprise quizzes + Assignment & group discussion = 5 marks for CT = 10 Marks.

Environmental Studies is a non credit based subject and only internal theoretical examination of 50 marks will be conducted

Total Marks: 800

Minimum passing for Sessional marks is 40%, and for theory subject 40%.

Assessment of Practical, Oral & term work to be done as per the prevailing norms of curriculum implementation & assessment.

| Name of the course: Network Analysis  |                                                                       |  |  |  |  |
|---------------------------------------|-----------------------------------------------------------------------|--|--|--|--|
| Course Code: ETCE/NA/S3               | Semester: Third                                                       |  |  |  |  |
| Duration: One Semester (Teaching - 15 | Maximum Marks: 100 Marks                                              |  |  |  |  |
| weeks + Internal Exam-2 weeks )       |                                                                       |  |  |  |  |
| Teaching Scheme:                      | <b>Examination Scheme</b>                                             |  |  |  |  |
| Theory: 4 contact hrs./ week          | Class Test (Internal Examination): 20 Marks                           |  |  |  |  |
| Tutorial:                             | Teacher's Assessment (Attendance, Assignment & interaction): 10 Marks |  |  |  |  |
| Practical: 3 contact hours/ week      | End Semester Examination: 70 Marks                                    |  |  |  |  |
| Credit: 5 ( Five )                    | Practical: 75 Marks                                                   |  |  |  |  |
| Rationale:                            |                                                                       |  |  |  |  |

Circuit theory is one of the core subjects in Electronics and Tele Communication Engineering. The subject covers basic elements of network, AC fundamentals, filter circuit & network synthesis.

## **Objectives**:

- 1) Understand the concept of networks, its parameters and network theorems.
- 2) Know passive filters and their analysis
- 3) Understand transmission lines
- 4) Understand attenuators and equalisers.
- 5) Know Laplace Transform and transient response to electrical networks.

|         |                          | Content (Name of topic)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Periods | Marks |
|---------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
|         |                          | Group-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |       |
| Unit 1  | Network Fundamentals     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |
|         | 1.1<br>1.2<br>1.3<br>1.4 | Active and passive network – balanced and unbalanced network – symmetrical and asymmetrical network – T and $\Pi$ network and their conversion – Simple problems  Characteristic impedance – propagation constant and image impedance – open and short circuit impedance and their relation to characteristic impedance  Mesh Analysis and Node Analysis using independent and Controlled Source Analysis  Thevenin's theorem – Norton's theorem – Maximum Power Transform |         |       |
| TT 1: 0 |                          | theorem – Superposition theorem – Simple problems                                                                                                                                                                                                                                                                                                                                                                                                                          | 0       |       |
| Unit 2  | Coupl                    | ed Circuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8       |       |
|         | 2.1                      | Idea of resonance – series and parallel resonant circuits – Q-value, selectivity, bandwidth  Principle of coupling – self-inductance & mutual inductance and their relationship – Co-efficient of coupling  Analysis of single tuned and double tuned circuits                                                                                                                                                                                                             |         |       |
|         | •                        | Group-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |       |
| Unit 3  | Filter                   | Circuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12      |       |

|         | 3.1   | Network Synthesis Concept of poles and zeroes (without any                                                          |    |   |
|---------|-------|---------------------------------------------------------------------------------------------------------------------|----|---|
|         |       | mathematical analysis)                                                                                              |    |   |
|         | 3.2   | Definition and relationship between neper and decibel                                                               |    |   |
|         | 3.3   | Basic idea of passive filter – Definitions of pass band, stop band and cut-off frequency                            |    |   |
|         | 3.4   |                                                                                                                     |    |   |
|         | 3.4   | Constant-K Prototype Filters: a) low pass filter, b) igh pass filter, c) Band pass filter, and, d) Band stop filter |    |   |
|         | 3.5   | Active Filters: Basic idea – their advantages and disadvantages over                                                |    |   |
|         | 0.0   | passive filters – Applications of filter circuits                                                                   |    |   |
|         |       | passive inters Applications of inter circuits                                                                       |    |   |
| Unit 4  | Atten | uators and Equaliser                                                                                                | 6  |   |
|         | 4.1   | Basic idea of attenuator - difference between attenuator and filter -                                               |    |   |
|         |       | symmetrical T and $\Pi$ attenuator – field of application of attenuators                                            |    |   |
|         | 4.2   | Concept of equalizer - purpose of equalizer and its classification -                                                |    |   |
|         |       | Difference between series & shunt equalizer and their field of                                                      |    |   |
|         |       | applications                                                                                                        |    |   |
|         |       | Group C                                                                                                             |    |   |
| I I:4 5 | Т     |                                                                                                                     | 10 |   |
| Unit 5  |       | emission Lines                                                                                                      | 12 |   |
|         | 5.1   | Types of transmission lines: Parallel wire and coaxial cable                                                        |    |   |
|         | 5.2   | Primary and secondary constants of transmission lines                                                               |    |   |
|         | 5.3   | Characteristic impedance – Reflection co-efficient – Standing wave ratio                                            |    |   |
|         | - 1   | and their relationship                                                                                              |    |   |
|         | 5.4   | Simple matching methods, single and double stub match for transmission                                              |    |   |
|         | 5.5   | lines Losses in transmission lines                                                                                  |    |   |
|         | 5.6   | Distortion in transmission line – Causes of distortion and condition for                                            |    |   |
|         | 0.0   | distortion less transmission – Practical feasibility for distortion less                                            |    |   |
|         |       | transmission                                                                                                        |    |   |
| Unit 6  | Trans | ient Response in Electrical Network                                                                                 | 12 |   |
|         | 6.1   | LAPLACE TRANSFORM: Definition – Condition of existence - Transforms                                                 |    |   |
|         |       | of some elementary functions - Linearity property - First shifting                                                  |    |   |
|         |       | property – Change of scale property – Inverse Laplace Transform                                                     |    |   |
|         | 6.2   | Transient response in electrical networks with sinusoidal and step function                                         |    |   |
|         |       | - Analysis with RL, RC, RLC circuits, time constant using differential                                              |    |   |
|         |       | equation                                                                                                            |    |   |
|         | TOTAL |                                                                                                                     | 60 |   |
|         |       |                                                                                                                     |    | • |

### **Contents Practical**

Skills to be developed: On satisfactory completion of the course, the students should be in a position to design few fundamental networks.

## **Intellectual Skills:**

- 1. Interpret the results
- 2. Verify the tables

## List of Practical: Any EIGHT( including MINI PROJECT)

|         | Suggested List of Laboratory Experiments                                               |  |  |  |  |
|---------|----------------------------------------------------------------------------------------|--|--|--|--|
| Sl. No. |                                                                                        |  |  |  |  |
| 1.      | To verify the Mesh Analysis and Node Analysis using independent and Controlled Source. |  |  |  |  |
| 2.      | To verify Thevenin's and Norton's theorems                                             |  |  |  |  |
| 3.      | To verify Maximum Power Transfer theorem.                                              |  |  |  |  |
| 4.      | To verify Superposition theorem.                                                       |  |  |  |  |
| 5.      | To study the series resonant circuit.                                                  |  |  |  |  |
| 6.      | To study parallel resonant circuit.                                                    |  |  |  |  |
| 7.      | To measure the characteristic impedance of symmetrical T and $\;\Pi$ networks          |  |  |  |  |
| 8.      | To test and to measure the cut -off frequencies of the following: —                    |  |  |  |  |
|         | (a) constant k-type low pass filter;                                                   |  |  |  |  |
|         | (b) constant k-type high pass filter                                                   |  |  |  |  |
| 9.      | To test T and $\Pi$ attenuator.                                                        |  |  |  |  |
| 10.     | To study standing wave pattern for a transmission line of finite length with:          |  |  |  |  |
|         | (a) open termination,                                                                  |  |  |  |  |
|         | (b) shorted termination, and,                                                          |  |  |  |  |
|         | (c) matched termination.                                                               |  |  |  |  |
| 11.     | To measure the attenuation constant and phase shift constant for matched termination.  |  |  |  |  |
| 12.     | To study the given RC differentiator at different time constant.                       |  |  |  |  |
| 13.     | To study the given RC integrator at different time constant.                           |  |  |  |  |

# MINI PROJECTS

| List of MI | List of MINI PROJECTS                                                            |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------|--|--|--|--|--|
| 1.         | To design constant k-type low pass filter and constant k-type high pass filter   |  |  |  |  |  |
| 2.         | To design T and $\Pi$ attenuator, which attenuate given signal to desired level. |  |  |  |  |  |

# **Examination scheme (Theoretical):**

A) Internal Examination: Marks- 20

B) End Semester Examination: Marks-70

C) Teacher's Assessment: Marks- 10

(i) Marks on Attendance: Marks-05

(ii) Assignments & Interaction: Marks- 05

| Group | Unit | Objec                       | Total Marks    |           |             |
|-------|------|-----------------------------|----------------|-----------|-------------|
|       |      | Note: 10 multiple choice    | type questions |           |             |
|       |      | To be set Multiple Choice   | To be answered | Marks per |             |
|       |      | (Twelve questions)          |                | question  |             |
| A     | 1,2  | 4                           |                |           |             |
| В     | 3,4  | 4                           | Any ten        | 1         | 10 X 1 = 10 |
| С     | 5,6  | 4                           |                |           |             |
|       |      | To be set short answer type | To be answered | Marks per |             |
|       |      | ( Ten questions)            |                | question  |             |
| A     | 1,2  | 3                           |                |           |             |
| В     | 3,4  | 3                           | Any five       | 2         | 5x2=10      |
| С     | 5,6  | 4                           |                |           |             |

| Group | Unit |                  | Total Marks               |           |                    |
|-------|------|------------------|---------------------------|-----------|--------------------|
|       |      | To be set        | To be answered            | Marks per |                    |
|       |      | ( Ten questions) |                           | question  |                    |
| A     | 1,2  | 3                | Any five (Taking at least |           |                    |
| В     | 3,4  | 3                | one from each group)      | 10        | $10 \times 5 = 50$ |
| С     | 5,6  | 4                |                           |           |                    |

Note 1: Teacher's assessment will be based on performance on given assignments & quizzes.

Note 2: Assignments may be given on all the topics covered on the syllabus.

| Sl. No. | Name of the Author               | Title of the Book                                       | Name of the Publisher            |
|---------|----------------------------------|---------------------------------------------------------|----------------------------------|
| 1.      | Ravish Singh                     | Network Analysis & Synthesis                            | Tata McGraw-Hill                 |
| 2.      | Ramesh babu                      | Electrical Circuit Analysis                             | SCITECH                          |
| 3.      | Suresh Kumar                     | Electric Circuits & Networks                            | Pearson                          |
| 4.      | Sukhija and Nagsarkar            | Circuits & Networks                                     | OXFORD                           |
| 5.      | Kaduskar, Rajankar,<br>Khatavkar | Network Fundamentals and Analysis                       | Wiley                            |
| 6.      | Chakraborti                      | Network Analysis & Synthesis                            | Tata McGraw-Hill                 |
| 7.      | Flosh                            | Network Theorem                                         | Prentice Hall of India           |
| 8.      | Prof. D. Chatterjee              | Network and transmission line                           | Learning Press                   |
| 9.      | A. K. Chakraborty                | Introduction to network, Filters and Transmission Lines | Dhanpat Rai & Sons               |
| 10.     | Kaduskar, Rajankar, Shedge       | Network Synthesis and Filter Design                     | Wiley                            |
| 11.     | V. Valkenburg                    | Network Analysis                                        | Prentice Hall of India, N. Delhi |
| 12.     | Sudhakar                         | Circuit and networks                                    | Tata MCGraw-Hill                 |
| 13.     | Jain & Kaur                      | Network, Filters and Transmission<br>Lines              | Tata MCGraw-Hill                 |
| 14.     | Hayt                             | Engineering Circuit Analysis                            | Tata McGraw-Hill                 |
| 15.     | Ryder                            | Network, Lines and Fields                               | Prentice Hall of India, N. Delhi |

### EXAMINATION SCHEME (SESSIONAL)

Name of Subject: Network Analysis Laboratory Full Marks-75

Subject Code: ETCE/LNA/S3

1. Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Third Semester.

Distribution of marks: Performance of Job – 15, Notebook – 10.

External Assessment of 50 marks shall be held at the end of the Third Semester on the entire syllabus. One experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system.
 Distribution of marks: On spot job – 35, Viva-voce – 15.

| Name of the course: Analog Electronics-1 |                          |  |  |  |
|------------------------------------------|--------------------------|--|--|--|
| Course Code: ETCE/AE1/S3                 | Semester: Third          |  |  |  |
| Duration: 6 months (Teaching-15 weeks +  | Maximum Marks: 100 Marks |  |  |  |
| Internal Exam-2 weeks )                  |                          |  |  |  |

| <b>Teaching Scheme:</b>          | Examination Scheme :                                            |
|----------------------------------|-----------------------------------------------------------------|
| Theory: 4 contact hours./ week   | Class Test (Internal Examination): 20 Marks                     |
| Tutorial:                        | Teacher's Assessment (Attendance, Assignment & interaction): 10 |
|                                  | Marks                                                           |
| Practical: 3 contact hours/ week | End Semester Examination: 70 Marks                              |
| Credit: 6 (Six)                  | Pretical:100 Marks                                              |
| Rationale:                       |                                                                 |

Electronics and its application play important role in our day to day life. Electronic components and circuits are used in most of the present day gadgets. Concept on analog electronics will pave easy way to understand operations and functioning of these gadgets also this subject is the basis of advance electronics. It starts with the idea of semiconductor materials, PN junction diodes which will enable the students to follow the functioning of all semiconductor devices. This is a core group subject and it develops cognitive and psychomotor skills.

### **Objectives**:

- 1) Describe the formation of PN junction
- 2) Draw the characteristics of basic components like diode, transistor etc.
- 3) Draw and describe the basic circuits of rectifier, filter, regulator and amplifiers.
- 4) Know voltage amplifiers and its small signal analysis
- 5) Understand characteristics, operations and application of special types of diodes.

|        | Content (Name of topic)                                                                                    | Periods | Marks |
|--------|------------------------------------------------------------------------------------------------------------|---------|-------|
|        | Group-A                                                                                                    | 28      |       |
| Unit 1 | Semiconductor and Diode                                                                                    | 8       |       |
|        | 1.1 Electrical properties of semiconductor materials, energy level diagrams of                             |         |       |
|        | conductor, semi conductor and Insulator.                                                                   |         |       |
|        | 1.2 Elemental and compound semiconductor Formation of P-Type and N-Type                                    |         |       |
|        | materials and their properties. Drift and diffusion current. Formation and                                 |         |       |
|        | behaviour of PN junction diode.                                                                            |         |       |
|        | 1.3 Zener diode, Zener breakdown & Avalanche Breakdown. Varactor diode,                                    |         |       |
|        | Schottky diode.                                                                                            |         |       |
|        | 1.4 Diode wave shaping circuits – clipper and clamper circuits                                             |         |       |
| Unit 2 | Bipolar Transistor                                                                                         | 8       |       |
|        | 2.1 Formation and properties of PNP and NPN Transistor                                                     |         |       |
|        | 2.2 Transistor configurations, input and output characteristics. $\alpha$ , $\beta$ , and $\gamma$ factors |         |       |
|        | 2.3 Comparison of CB, CE, and CC configurations.                                                           |         |       |
| Unit 3 | Transistor Biasing                                                                                         | 12      |       |
|        | 3.1 Concept of Q-point, ac and dc load lines                                                               |         |       |
|        | 3.2 Stabilization and stability factor                                                                     |         |       |
|        | 3.3 BIASING: Base bias — Collector feedback bias — Emitter feedback bias                                   |         |       |
|        | — Potential divider bias.                                                                                  |         |       |
|        | 3.4 Bias compensation circuits using diode and thermistors – Current mirror                                |         |       |
|        | bias                                                                                                       |         |       |

|        | Group-B                                                                           | 30  |  |
|--------|-----------------------------------------------------------------------------------|-----|--|
| Unit 4 | JFET, MOSFET AND UJT                                                              | 6   |  |
|        | 4.1 Difference between BJT, FET and MOSFET                                        |     |  |
|        | 4.2 Symbol and basic structure, Basic operation, VI characteristics and biasing   |     |  |
|        | of JFET, MOSFET -depletion and enhancement                                        |     |  |
|        | 4.3 Basic structure and Basic operation, VI characteristics of UJT, Application   |     |  |
|        | of UJT                                                                            |     |  |
|        | 4.4 Relation among drain resistance, amplification factor and mutual              |     |  |
|        | conductance                                                                       |     |  |
| Unit 5 | Small Signal Transistor Amplifiers                                                | 12  |  |
|        | 5.1 Hybrid model and h-parameters of CB, CE & CC mode transistor                  |     |  |
|        | amplifiers - Calculation of voltage gain, current gain, power gain, input         |     |  |
|        | and output impedance in terms of h-parameters - Comparison of the three           |     |  |
|        | configurations.                                                                   |     |  |
|        | 5.2 Small signal FET equivalent circuits - Common Source and Common               |     |  |
|        | Drain amplifier – FET application as VVR, Constant Current Source etc.            |     |  |
|        | 5.3 Operation of VMOS & CMOS and power MOSFET – Precautions in                    |     |  |
|        | handling MOSFET                                                                   |     |  |
| Unit 6 | Multistage Amplifier                                                              | 12  |  |
|        | 6.1 COUPLING: RC coupled – Direct coupled – Transformer-coupled amplifiers –      |     |  |
|        | 6.2 Effect on Gain & Bandwidth and Frequency response for cascading               |     |  |
|        | 6.3 Comparison of different types of cascading                                    |     |  |
|        | GROUP-C                                                                           | 17  |  |
| Unit 7 | Power Amplifier                                                                   | 8   |  |
|        | 7.1 Characteristics of Class A, Class B, Class C and Class AB amplifier           |     |  |
|        | 7.2 Difference between Voltage and Power Amplifier                                |     |  |
|        | 7.3 Transformer Coupled Class A Power Amplifier: Circuit operation –              |     |  |
|        | Calculation of power, efficiency & distortion                                     |     |  |
|        | 7.4 Class B Push Pull Amplifier: Circuit operation – Calculation of power,        |     |  |
|        | efficiency & distortion - Crossover distortion - Advantages and                   |     |  |
|        | disadvantages - Complementary symmetry and quasi-complementary                    |     |  |
|        | symmetry Class B Push Pull Amplifier                                              |     |  |
|        | 7.5 Noise in amplifier circuits                                                   |     |  |
| Unit 8 | Rectifier and Power Supply                                                        | 9   |  |
|        | 8.1 Half Wave and Full Wave Rectifiers: Average voltage – R.M.S. voltage,         |     |  |
|        | efficiency and ripple factor – Percentage voltage regulation                      |     |  |
|        | 8.2 Function of filter circuits – Capacitor input filter – Inductive filter –     |     |  |
|        | Π type filter – Calculation of ripple factor and average output voltage –         |     |  |
|        | Function of bleeder resistor                                                      |     |  |
|        | 8.3 Series and shunt regulator using transistor – IC Voltage Regulators: Positive |     |  |
|        | & Negative, their specifications                                                  |     |  |
|        | 8.4 Voltage Multiplier :Voltage doublers – Tripler – Quadrupler – Their           |     |  |
|        | applications                                                                      | 7.5 |  |
|        | TOTAL                                                                             | 75  |  |

### **Practicals**

Skills to be developed: On satisfactory completion of the course, the students should be in a position to design power supply, amplifier and other analog circuits.

### **Intellectual Skills:**

- 1. Interpret the results
- 2. Verify the tables

## List of Practical: Any SIX( including MINI PROJECT)

|         | Suggested List of Laboratory Experiments                                                               |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------|--|--|--|
| Sl. No. |                                                                                                        |  |  |  |
| 1.      | To study the VI characteristics of a forward and reverse biased p-n junction Diode                     |  |  |  |
| 2.      | To study the VI characteristics of a reverse biased Zener diode                                        |  |  |  |
| 3.      | To study the input and output characteristics and to find the h-parameters of a BJT for:               |  |  |  |
|         | (a) C-E configuration,                                                                                 |  |  |  |
|         | (b) C-C configuration,                                                                                 |  |  |  |
|         | (c) C-B configuration                                                                                  |  |  |  |
| 4.      | To study the FET characteristics                                                                       |  |  |  |
| 5.      | To study the MOSFET characteristics                                                                    |  |  |  |
| 6.      | To study the rectifier with and without capacitor filter for:—                                         |  |  |  |
|         | (a) Half-wave rectifier,                                                                               |  |  |  |
|         | (b) Full-wave rectifier,                                                                               |  |  |  |
|         | (c) Bridge rectifier                                                                                   |  |  |  |
| 7.      | To determine frequency response characteristics of RC coupled amplifier circuit and calculation of     |  |  |  |
|         | bandwidth, midband gain, input impedance and output impedance for :                                    |  |  |  |
|         | (a) Single-stage amplifier,                                                                            |  |  |  |
|         | (b) Double-stage amplifier                                                                             |  |  |  |
| 8.      | To study the output waveform of push-pull amplifier for Class-A, Class-B & Class-AB operations         |  |  |  |
| 9.      | To study shunt and series regulator and draw the following plots: line regulation and load regulation  |  |  |  |
| 10.     | To study the V-I characteristics of UJT ( show the cut-off, saturation and negative resistance region) |  |  |  |

### MINI PROJECTS

| List of MINI PROJECTS |                                                     |
|-----------------------|-----------------------------------------------------|
| 1.                    | To design a power supply                            |
| 2.                    | To design a single stage OR double stage amplifier. |

## **Examination scheme (Theoretical):**

A) Internal Examination: Marks- 20

C) Teacher's Assessment: Marks- 10

B) End Semester Examination: Marks-70

(i) Marks on Attendance: Marks-05

(ii) Assignments & Interaction: Marks- 05

| Group | Unit  | Objective questions                                        |                | Total Marks |             |
|-------|-------|------------------------------------------------------------|----------------|-------------|-------------|
|       |       | Note: 10 multiple choice and 5 short answer type questions |                |             |             |
|       |       | To be set Multiple Choice                                  | To be answered | Marks per   |             |
|       |       | ( Twelve questions)                                        |                | question    |             |
| A     | 1,2,3 | 4                                                          | Any ten        | 1           | 10 X 1 = 10 |

| В | 4,5,6 | 4                           |                |           |        |
|---|-------|-----------------------------|----------------|-----------|--------|
| С | 7,8   | 4                           |                |           |        |
|   |       | To be set short answer type | To be answered | Marks per |        |
|   |       | ( Ten questions)            |                | question  |        |
| A | 1,2,3 | 4                           |                |           |        |
| В | 4,5,6 | 4                           | Any five       | 2         | 5x2=10 |
| С | 7,8   | 2                           |                |           |        |

| Group | Unit  |                 | Subjective questions      |           | Total Marks |
|-------|-------|-----------------|---------------------------|-----------|-------------|
|       |       | To be set       | To be answered            | Marks per |             |
|       |       | (Ten questions) |                           | question  |             |
| A     | 1,2,3 | 3               | Any five (Taking at least |           |             |
| В     | 4,5,6 | 4               | one from each group)      | 10        | 10 X 5 = 50 |
| С     | 7,8   | 3               |                           |           |             |

Note 1: Teacher's assessment will be based on performance on given assignments & quizzes.

Note 2: Assignments may be given on all the topics covered on the syllabus.

### EXAMINATION SCHEME (SESSIONAL)

Name of Subject: Analog Electronics Laboratory Full Marks -100

Subject Code: ETCE/LAE1/S3

- 1. Continuous Internal Assessment of 50 marks is to be carried out by the teachers throughout the Third Semester.

  Distribution of marks: Performance of Job 35, Notebook 15.
- External Assessment of 50 marks shall be held at the end of the Third Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system.
   Distribution of marks: On spot job 35, Viva-voce 15.

|         | Text Books:              |                                  |                         |
|---------|--------------------------|----------------------------------|-------------------------|
| Sl. No. | Name of the Author       | Title of the Book                | Name of the Publisher   |
| 1.      | Malvino                  | Electronic Principles            | Tata McGraw-Hill        |
| 2.      | David A. Bell            | Electronic Devices and Circuits  | Oxford University Press |
| 3.      | Anil K. Maini            | Electronics Devices and circuits | Wiley                   |
| 4.      | KK Ghosh                 | Basic Electronics                | Platinum Publisher      |
| 5.      | BL Theraja               | Basic Electronics (Solid state)  | S Chand                 |
| 6.      | S. Salivahanan           | Electronic Devices and Circuits  | Tata McGraw-Hill        |
| 7.      | VK Mehta, Rohit Mehta    | Principles of Electronics        | S Chand                 |
| 8.      | Nagrath                  | Electronics Devices and Circuits | Prentice Hall of India  |
| 9.      | Millman & Halkias        | Electronic Devices and Circuits  | Tata McGraw-Hill        |
| 10.     | Chattopadhyay & Rakhshit | Electronic Fundamentals and      | New Age International   |
|         |                          | Applications                     |                         |
| 11.     | Boylestad & Nashalsky    | Electronic Devices and Circuits  | Pearson                 |
| 12.     | Samar Chottopadhyay      | Analog Electronics - I & II      | Naba Prakashani         |
| 13.     | Maitreyi Ray Kanjilal    | Analog Electronics Circuits      | JBBL                    |

| 14. | Ganesh Babu      | Linear Integrated Circuits         | SCITECH                          |
|-----|------------------|------------------------------------|----------------------------------|
| 15. | JB Gupta         | Electronics Devices & Circuits     | Kataria & Sons                   |
| 16. | Sanjay Sharma    | Electronics Devices & Circuits     | Kataria & Sons                   |
| 17. | Mottershed       | Electronic Devices and Circuits    | Prentice Hall of India, N. Delhi |
| 18. | Bhargava         | Basic Electronic & Linear Circuits | Tata McGraw-Hill                 |
| 19. | Sahadeb          | Electronic Principle               | Dhanpat Rai & Sons               |
| 20. | M.L. Anand       | Modern Electronics                 | S Chand                          |
| 21. | Dr. T. Thygrajan | Fundamentals of Electrical and     | SCITECH                          |
|     |                  | Electronics Engg                   |                                  |
| 22. | Premsingh Jakhar | Basic Electronics                  | Dhanpat Rai Publishing Co        |
| 23. | Milman & Halkias | Integrated Electronics             | Tata McGraw-Hill                 |

| Name of the                                 | Name of the course: Digital Electronics                      |  |  |  |
|---------------------------------------------|--------------------------------------------------------------|--|--|--|
| Course Code: ETCE/DE/S3                     | Semester: Third                                              |  |  |  |
| Duration: One Semester (Teaching-15 weeks + | Maximum Marks: 100                                           |  |  |  |
| Internal Exam-2 weeks )                     |                                                              |  |  |  |
| Teaching Scheme:                            | Examination Scheme                                           |  |  |  |
| Theory: 4 contact hrs./ week                | Class Test(Internal Examination): 20 Marks                   |  |  |  |
| Tutorial:                                   | Teacher's Assessment (Attendance, Assignment & interaction): |  |  |  |
|                                             | 10 Marks                                                     |  |  |  |
| Practical: 3 contact hours/ week            | End Semester Examination: 70 Marks                           |  |  |  |
| Credit: 5(five)                             | Practical: 75 Marks                                          |  |  |  |
| Rationale:                                  |                                                              |  |  |  |

The advancements in microelectronics design, manufacturing, computer technology and information systems have caused the rapid increase in the use of digital circuits. Hence this subject is intended to learn facts, concepts, principles and applications of digital techniques. Thus, students can sharpen their skills of digital design by learning the concept of number systems, logic gates, combinational and sequential logic circuits etc.

## **Objectives:**

- 1. Do conversion of number systems
- 2. Understand the concept of logic gates and its operation
- 3. Design simple logic circuits using logic gates
- 4. Design of combinational circuit
- 5. Design of sequential circuit
- 6. Gain the comprehensive idea on various memory devices
- 7. Understand Analog to Digital Conversion and Digital to Analog Conversion techniques
- 8. Understand different logic families and their comparison

|        | Content (Name of topic)            | Periods | Marks |
|--------|------------------------------------|---------|-------|
|        | Group-A                            |         |       |
| Unit 1 | Numbers System & Basic Logic Gates | 6       |       |

| 1.1 Number System - Introduction to Binary, Octal, Decimal, Hexadecimal number system, Conversion of number systems,  1.2 I's complement and 2's complement, Binary arithmetic (addition, subtraction, division, multiplication).  1.3 Symbolic representation and truth table for logic gates; BUFFER - NOT - OR - AND - NOR - XOR - X-NOR  Unit 2  Boolean Algebra  2.1 Boolean Variables - Boolean function - Rules and laws of Boolean algebra - De Morgan's theorem  2.2 Max, term and min, term - Canonical form of equation - Simplification of Boolean expression  2.3 Karnaugh map technique - Don't care condition - Prime implicants - Canonical forms - Quine-McClusky method  2.4 Realization of Boolean expression with logic gates  Unit 3  Combinational Logic Circuits  3.1 ARTHMETIC ERCUTIS: Half adder - Full adder - Half subtractor - Full subtractor - Parallel and serial full adder (1's complement, 2's complement and 9's complement addition)  3.2 Design of circuits using universal gates  3.3 Code converter, encoder and decoder - Multiplexer & demultiplexer  3.4 Parity generator and checker - Comparator  Group-B  Unit 4  Sequential Logic Circuits  4.1 Difference between combinational and sequential logic circuits - Triggering of sequential logic circuits  4.2 Difference between flip flop and latch - Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter - Ripple counter - Mod-N counter - Up-down counter - Ring counter - Johnson counter - Programmable counter - Applications  4.4 REGISTERS: Shift registers - Serial In Serial Out - Serial In Parallel Out - Parallel In Serial Out - Parallel In Parallel Out - Applications  4.4 REGISTERS: Shift registers - Serial In Serial Out - Serial In Parallel Out - Parallel In Serial Out - Parallel In Parallel Out - Applications  4.5 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6  Data Converters  6.1 DiGTAL TO ANALOG CONVERTERS: Binary weighted resistor type - Successive              |        |                                                                                  |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------|----|
| 1.2 1's complement and 2's complement, Binary arithmetic (addition, subtraction, division, multiplication), 1.3 Symbolic representation and trut table for logic gates: BUFFER – NOT – OR – AND – NAND – NOR – XOR – X-NOR  Unit 2 Boolean Algebra 2.1 Boolean Algebra 2.2 Max. term and min. term – Canonical form of equation – Simplification of Boolean expression 2.3 Karnaugh map technique – Don't care condition – Prime implicants – Canonical forms – Quine-McClusky method 2.4 Realization of Boolean expression with logic gates  Unit 3 Combinational Logic Circuits  3.1 ARTHIMETIC CIRCUITS: Half adder – Full adder – Half subtractor – Full subtractor – Parallel and serial full adder (1's complement, 2's complement and 9's complement addition) 3.2 Design of circuits using universal gates 3.3 Code converter, encoder and decoder – Multiplexer & demultiplexer 3.4 Parity generator and checker – Comparator  Group-B  Unit 4 Sequential Logic Circuits  4.1 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits 4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal 4.3 Contribest Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ripg counter – Johnson counter – Programmable counter – Applications 4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Reprogrammable counter – Rod, PROM, ERROM, ERROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6 Data Converters  6 Li DictriA.1 To Analog ConverterRs: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                   |        |                                                                                  |    |
| subtraction, division, multiplication).  1.3 Symbolic representation and truth table for logic gates: BUFFER – NOT – OR – AND – NAND – NOR – XOR – X-NOR  Boolean Algebra  2.1 Boolean variables – Boolean function – Rules and laws of Boolean algebra – De Morgan's theorem  2.2 Max. term and min. term – Canonical form of equation – Simplification of Boolean expression  2.3 Karnaugh map technique – Don't care condition – Prime implicants – Canonical forms – Quine-McClusky method  2.4 Realization of Boolean expression with logic gates  Unit 3 Combinational Logic Circuits  3.1 ARITHMETIC CIRCUITS: Half adder – Full adder – Half subtractor – Full subtractor – Parallel and serial full adder (1's complement, 2's complement and 9's complement addition)  3.2 Design of circuits using universal gates  3.3 Code converter, encoder and decoder – Multiplexer & demultiplexer  3.4 Parity generator and checker – Comparator  Group-B  Unit 4 Sequential Logic Circuits  4.2 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits  4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ripple counter – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel Nerial Out – Parallel In Parallel Out – Applications  4.5 Memory Devices  5.1 MEMORY ADDRESSING: Read, Write and Read Only operations  5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory  5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM  5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6 1 Dicital To Analog Converters: Binary weighted resistor type – R- |        | number system, Conversion of number systems,                                     |    |
| Unit 2  1.3 Symbolic representation and truth table for logic gates: BUFFER – NOT – OR – AND – NAND – NOR – XOR – X-NOR  2.1 Boolean Aglebra 2.1 Boolean variables – Boolean function – Rules and laws of Boolean algebra – De Morgan's theorem 2.2 Max. term and min. term – Canonical form of equation – Simplification of Boolean expression 2.3 Karnaugh map technique – Don't care condition – Prime implicants – Canonical forms – Quine-McClusky method 2.4 Realization of Boolean expression with logic gates  Unit 3  1. ARITHMETIC CIRCUITS: Half adder – Full adder – Half subtractor – Full subtractor – Parallel and serial full adder (1's complement, 2's complement and 9's complement addition) 3.2 Design of circuits using universal gates 3.3 Code converter, encoder and decoder – Multiplexer & demultiplexer 3.4 Parity generator and checker – Comparator  Group-B  Unit 4  Sequential Logic Circuits 4.1 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits 4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK, master slave, T flip flops using basic gates, preset and clear signal 4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications 4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Parallel In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Parallel In Serial Out – Parallel In  |        |                                                                                  |    |
| Unit 2 Boolean Algebra 8  2.1 Boolean Algebra 2.1 Boolean Algebra 8  2.2 Max. term and min. term — Canonical form of equation — Simplification of Boolean expression 2.2 Max. term and min. term — Canonical form of equation — Simplification of Boolean expression 2.3 Karnaugh map technique — Don't care condition — Prime implicants — Canonical forms — Quine-McClusky method 2.4 Realization of Boolean expression with logic gates 10  Unit 3 Combinational Logic Circuits 10  3.1 ARITHMETIC CIRCUITS: Half adder — Full adder — Half subtractor — Full subtractor — Parallel and serial full adder (1's complement, 2's complement and 9's complement addition) 3.2 Design of circuits using universal gates 3.3 Code converter, encoder and decoder — Multiplexer & demultiplexer 3.4 Parity generator and checker — Comparator  Group-B  Unit 4 Sequential Logic Circuits 12  4.1 Difference between flip flop and latch — Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal 4.3 COUNTERS: Asynchronous and synchronous counter — Ripple counter — Mod-N counter — Up-down counter — Ripple counter — Programmable counter — Applications 4.4 REGISTERS: Shift registers — Serial In Serial Out — Serial In Parallel Out — Parallel In Serial Out — Parallel In Parallel Out — Parallel In Serial Out — Parallel In Parallel Out — Parallel In Serial Out — Parallel In Parallel Out — Parallel In Serial Out — Parallel In Parallel Out — Parallel In Serial Out — Parallel In Parallel Out — Parallel In Serial Out — Parallel In Parallel Out — Paralle |        |                                                                                  |    |
| Unit 2 Boolean Algebra  2.1 Boolean variables – Boolean function – Rules and laws of Boolean algebra – De Morgan's theorem  2.2 Max. term and min. term – Canonical form of equation – Simplification of Boolean expression  2.3 Karnaugh map technique – Don't care condition – Prime implicants – Canonical forms – Quine-McClusky method 2.4 Realization of Boolean expression with logic gates  Unit 3 Combinational Logic Circuits  3.1 ARITHMETIC CIRCUITS: Half adder – Full adder – Half subtractor – Full subtractor – Parallel and serial full adder (I's complement, 2's complement and 9's complement addition)  3.2 Design of circuits using universal gates 3.3 Code converter, encoder and decoder – Multiplexer & demultiplexer 3.4 Parity generator and checker – Comparator  Group-B  Unit 4 Sequential Logic Circuits  4.1 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits  4.2 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits  4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTRES, T flip flops using basic gates, preset and clear signal  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Serial Out – Parallel In Serial Out – Parallel Registers – Serial In Serial Out – Serial In Parallel Out – Parallel Registers – Serial In Serial Out – Serial In Parallel Out – Parallel Registers – Serial In Serial Out  |        |                                                                                  |    |
| 2.1 Boolean variables – Boolean function – Rules and laws of Boolean algebra – De Morgan's theorem  2.2 Max. term and min. term – Canonical form of equation – Simplification of Boolean expression  2.3 Karnaugh map technique – Don't care condition – Prime implicants – Canonical forms – Quine-McClusky method  2.4 Realization of Boolean expression with logic gates  Unit 3 Combinational Logic Circuits  3.1 ARITHMETIC CIRCUITS: Half adder – Full adder – Half subtractor – Full subtractor – Parallel and serial full adder (I's complement, 2's complement and 9's complement addition)  3.2 Design of circuits using universal gates  3.3 Code converter, encoder and decoder – Multiplexer & demultiplexer  3.4 Parity generator and checker – Comparator  Group-B  Unit 4 Sequential Logic Circuits  4.2 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits  4.2 Difference Between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Parallel In Serial Out – Parallel In Seria |        |                                                                                  |    |
| - De Morgan's theorem 2.2 Max. term and min. term - Canonical form of equation - Simplification of Boolean expression 2.3 Karnaugh map technique - Don't care condition - Prime implicants - Canonical forms - Quine-McClusky method 2.4 Realization of Boolean expression with logic gates  Unit 3 Combinational Logic Circuits  3.1 ARITHMETIC CIRCUITS: Half adder - Full adder - Half subtractor - Full subtractor - Parallel and serial full adder (I's complement, 2's complement and 9's complement addition) 3.2 Design of circuits using universal gates 3.3 Code converter, encoder and decoder - Multiplexer & demultiplexer 3.4 Parity generator and checker - Comparator  Group-B  Unit 4 Sequential Logic Circuits  4.1 Difference between combinational and sequential logic circuits - Triggering of sequential logic circuits 4.2 Difference between flip flop and latch - Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal 4.3 COUNTERS: Asynchronous and synchronous counter - Ripple counter - Mod-N counter - Up-down counter - Ring counter - Johnson counter - Programmable counter - Applications 4.4 REGISTERS: Shift registers - Serial In Serial Out - Serial In Parallel Out - Parallel In Serial Out - Parallel In Parallel Out - Parallel In Parallel Out - Parallel In Serial Out - Parallel In Parallel Out - Parallel In Serial Out - Serial In Parallel Out - Parallel In Serial Out - Serial In Parallel Out - Parallel In Serial Out - Serial In Parallel Out - Parallel In Serial Out - Parallel In Serial Out - Serial In Parallel Out - Parallel In Serial Out - Parallel In Parallel Out - Parallel In Serial Out - Parallel Out - Parallel In Serial Out - Parallel  | Unit 2 |                                                                                  | 8  |
| 2.2 Max. term and min. term – Canonical form of equation – Simplification of Boolean expression 2.3 Karnaugh map technique – Don't care condition – Prime implicants – Canonical forms – Quine-McClusky method 2.4 Realization of Boolean expression with logic gates  Unit 3 Combinational Logic Circuits  3.1 ARITHMETIC CIRCUITS: Half adder – Full adder – Half subtractor – Full subtractor – Parallel and serial full adder (1's complement, 2's complement and 9's complement addition) 3.2 Design of circuits using universal gates 3.3 Code converter, encoder and decoder – Multiplexer & demultiplexer 3.4 Parity generator and checker – Comparator  Group-B  Unit 4 Sequential Logic Circuits 4.1 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits 4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal 4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications 4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Parallel In Serial Out – Parallel Out – Parallel In Serial Out – Parallel Out – Parallel In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel Out – Parallel In Serial Out – Serial In Serial Out – Seri |        |                                                                                  |    |
| Boolean expression  2.3 Karnaugh map technique — Don't care condition — Prime implicants — Canonical forms — Quine-McClusky method  2.4 Realization of Boolean expression with logic gates  Unit 3 Combinational Logic Circuits  3.1 ARITHMETIC CIRCUITS: Half adder — Full adder — Half subtractor — Full subtractor — Parallel and serial full adder (1's complement, 2's complement and 9's complement addition)  3.2 Design of circuits using universal gates  3.3 Code converter, encoder and decoder — Multiplexer & demultiplexer  3.4 Parity generator and checker — Comparator  Group-B  Unit 4 Sequential Logic Circuits  4.1 Difference between combinational and sequential logic circuits — Triggering of sequential logic circuits  4.2 Difference between lipi flop and latch — Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter — Ripple counter — Mod-N counter — Up-down counter — Ring counter — Johnson counter — Programmable counter — Applications  4.4 REGISTERS: Shift registers — Serial In Serial Out — Serial In Parallel Out — Parallel In Serial Out — Parallel In Parallel Out — Report Counter RAM  5.1 Memory Devices  6  5.2 Memory Cells: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory  5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM  5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6  6.1 Digital To Analog Converters: Binary weighted resistor type — R-2R ladder type — Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                       |        |                                                                                  |    |
| 2.3 Karnaugh map technique — Don't care condition — Prime implicants — Canonical forms — Quine-McClusky method 2.4 Realization of Boolean expression with logic gates  Unit 3 Combinational Logic Circuits  3.1 ARITHMETIC CIRCUITS: Half adder — Full adder — Half subtractor — Full subtractor — Parallel and serial full adder (1's complement, 2's complement and 9's complement addition)  3.2 Design of circuits using universal gates 3.3 Code converter, encoder and decoder — Multiplexer & demultiplexer  3.4 Parity generator and checker — Comparator  Group-B  Unit 4 Sequential Logic Circuits  4.1 Difference between combinational and sequential logic circuits — Triggering of sequential logic circuits  4.2 Difference between flip flop and latch — Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter — Ripple counter — Mod-N counter — Up-down counter — Ring counter — Johnson counter — Programmable counter — Applications  4.4 REGISTERS: Shift registers — Serial In Serial Out — Serial In Parallel Out — Parallel In Serial Out — Parallel In Parallel Out — Parallel In Serial Out — Parallel In Parallel Out — Parallel In Serial Out — Parallel In Serial Out — Parallel Out — Parallel Out — Parallel In Serial Out — Parallel Out — P |        |                                                                                  |    |
| Canonical forms – Quine-McClusky method 2.4 Realization of Boolean expression with logic gates  Unit 3 Combinational Logic Circuits 3.1 ARITHMETIC CIRCUITS: Half adder – Full adder – Half subtractor – Full subtractor – Parallel and serial full adder (1's complement, 2's complement and 9's complement addition) 3.2 Design of circuits using universal gates 3.3 Code converter, encoder and decoder – Multiplexer & demultiplexer 3.4 Parity generator and checker – Comparator  Group-B  Unit 4 Sequential Logic Circuits 4.1 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits 4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal 4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications 4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications 4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications 4.5 MEMORY ADDRESSING: Read, Write and Read Only operations 5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters 6 6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                                                                  |    |
| 2.4 Realization of Boolean expression with logic gates  Unit 3 Combinational Logic Circuits  3.1 Arithmetic Circuits: Half adder – Full adder – Half subtractor – Full subtractor – Parallel and serial full adder (1's complement, 2's complement and 9's complement addition)  3.2 Design of circuits using universal gates  3.3 Code converter, encoder and decoder – Multiplexer & demultiplexer  3.4 Parity generator and checker – Comparator  Group-B  Unit 4 Sequential Logic Circuits  4.1 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits  4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices  5.1 MEMORY ADDRESSING: Read, Write and Read Only operations  5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory  5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM  5.4 Digital Logic Arrays-PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6 1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                  |    |
| Unit 3 Combinational Logic Circuits  3.1 ARITHMETIC CIRCUITS: Half adder – Full adder – Half subtractor – Full subtractor – Parallel and serial full adder (1's complement, 2's complement and 9's complement addition)  3.2 Design of circuits using universal gates  3.3 Code converter, encoder and decoder – Multiplexer & demultiplexer  3.4 Parity generator and checker – Comparator  Group-B  Unit 4 Sequential Logic Circuits  4.1 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits  4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices  5.1 Memory Addressing: Read, Write and Read Only operations  5.2 Memory Cells: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory  5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM  5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                  |    |
| 3.1 ARITHMETIC CIRCUITS: Half adder – Full adder – Half subtractor – Full subtractor – Parallel and serial full adder (1's complement, 2's complement and 9's complement addition)  3.2 Design of circuits using universal gates  3.3 Code converter, encoder and decoder – Multiplexer & demultiplexer  3.4 Parity generator and checker – Comparator  Group-B  Unit 4 Sequential Logic Circuits  4.1 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits  4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices  5.1 Memory Addressing: Read, Write and Read Only operations  5.2 Memory Cell.s: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory  5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM  5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                                                                  |    |
| subtractor – Parallel and serial full adder (1's complement, 2's complement and 9's complement addition)  3.2 Design of circuits using universal gates  3.3 Code converter, encoder and decoder – Multiplexer & demultiplexer  3.4 Parity generator and checker – Comparator  Group-B  Unit 4 Sequential Logic Circuits  4.1 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits  4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices  5.1 Memory Addressing: Read, Write and Read Only operations  5.2 Memory Cells: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory  5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM  5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit 3 |                                                                                  | 10 |
| and 9's complement addition)  3.2 Design of circuits using universal gates  3.3 Code converter, encoder and decoder – Multiplexer & demultiplexer  3.4 Parity generator and checker – Comparator  Group-B  Unit 4 Sequential Logic Circuits  4.1 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits  4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices  5.1 Memory Addressing: Read, Write and Read Only operations  5.2 Memory Cells: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory  5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM  5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                                  |    |
| 3.2 Design of circuits using universal gates 3.3 Code converter, encoder and decoder – Multiplexer & demultiplexer 3.4 Parity generator and checker – Comparator  Group-B  Unit 4 Sequential Logic Circuits  4.1 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits  4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ripple counter – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices  5.1 MEMORY ADDRESSING: Read, Write and Read Only operations 5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory  5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM  5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                  |    |
| 3.3 Code converter, encoder and decoder – Multiplexer & demultiplexer 3.4 Parity generator and checker – Comparator  Group-B  Unit 4 Sequential Logic Circuits 12  4.1 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits  4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices 6  5.1 MEMORY ADDRESSING: Read, Write and Read Only operations 5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters 6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                                                  |    |
| Unit 4 Sequential Logic Circuits 12  4.1 Difference between combinational and sequential logic circuits - Triggering of sequential logic circuits 4.2 Difference between flip flop and latch - Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal 4.3 COUNTERS: Asynchronous and synchronous counter - Ripple counter - Mod-N counter - Up-down counter - Ring counter - Johnson counter - Programmable counter - Applications 4.4 REGISTERS: Shift registers - Serial In Serial Out - Serial In Parallel Out - Parallel In Serial Out - Parallel In Parallel Out - Applications 6  Unit 5 Memory Devices 6  5.1 Memory Addressing: Read, Write and Read Only operations 5.2 Memory Cells: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters 6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type - R-2R ladder type - Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                  |    |
| Unit 4 Sequential Logic Circuits 12  4.1 Difference between combinational and sequential logic circuits - Triggering of sequential logic circuits  4.2 Difference between flip flop and latch - Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter - Ripple counter - Mod-N counter - Up-down counter - Ring counter - Johnson counter - Programmable counter - Applications  4.4 REGISTERS: Shift registers - Serial In Serial Out - Serial In Parallel Out - Parallel In Serial Out - Parallel In Parallel Out - Applications  Unit 5 Memory Devices 6  5.1 MEMORY ADDRESSING: Read, Write and Read Only operations 5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters 6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type - R-2R ladder type - Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                                                                  |    |
| Unit 4 Sequential Logic Circuits  4.1 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits  4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices  5.1 MEMORY ADDRESSING: Read, Write and Read Only operations 5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory  5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM  5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 3.4 Parity generator and checker – Comparator                                    |    |
| 4.1 Difference between combinational and sequential logic circuits – Triggering of sequential logic circuits  4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices  5.1 Memory Addressing: Read, Write and Read Only operations 5.2 Memory Cells: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6 6.1 Digital to Analog Converters: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | Group-B                                                                          |    |
| Triggering of sequential logic circuits 4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal 4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications 4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices  5.1 Memory Addressing: Read, Write and Read Only operations 5.2 Memory Cells: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6 6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit 4 |                                                                                  | 12 |
| 4.2 Difference between flip flop and latch – Construction of RS, D, JK, JK master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices  5.1 MEMORY ADDRESSING: Read, Write and Read Only operations  5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory  5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM  5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                  |    |
| master slave, T flip flops using basic gates, preset and clear signal  4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter – Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices 6  5.1 MEMORY ADDRESSING: Read, Write and Read Only operations 5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Unit 6 Data Converters 6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                  |    |
| 4.3 COUNTERS: Asynchronous and synchronous counter – Ripple counter –  Mod-N counter – Up-down counter – Ring counter – Johnson counter –  Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out –  Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices 6  5.1 Memory Addressing: Read, Write and Read Only operations 5.2 Memory Cells: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters 6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                                                  |    |
| Mod-N counter – Up-down counter – Ring counter – Johnson counter – Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices  6  5.1 Memory Addressing: Read, Write and Read Only operations 5.2 Memory Cells: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory  5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                  |    |
| Programmable counter – Applications  4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices 6  5.1 MEMORY ADDRESSING: Read, Write and Read Only operations 5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Unit 6 Data Converters 6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                  |    |
| 4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices 6  5.1 MEMORY ADDRESSING: Read, Write and Read Only operations 5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Unit 6 Data Converters 6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                  |    |
| Parallel In Serial Out – Parallel In Parallel Out – Applications  Unit 5 Memory Devices 6  5.1 MEMORY ADDRESSING: Read, Write and Read Only operations 5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters 6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                                                                  |    |
| Unit 5 Memory Devices  5.1 MEMORY ADDRESSING: Read, Write and Read Only operations 5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters  6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type - R-2R ladder type - Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 4.4 REGISTERS: Shift registers – Serial In Serial Out – Serial In Parallel Out – |    |
| 5.1 MEMORY ADDRESSING: Read, Write and Read Only operations 5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters 6 6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | Parallel In Serial Out – Parallel In Parallel Out – Applications                 |    |
| 5.2 MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters 6 6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit 5 | Memory Devices                                                                   | 6  |
| Memory 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters 6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type - R-2R ladder type - Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 5.1 MEMORY ADDRESSING: Read, Write and Read Only operations                      |    |
| 5.3 Circuit diagram using CMOS transistors and working of static and dynamic RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters 6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                                                                  |    |
| RAM 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters 6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type - R-2R ladder type - Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                  |    |
| 5.4 Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA  Group C  Unit 6 Data Converters 6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                  |    |
| Unit 6 Data Converters 6  6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                  |    |
| Unit 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                  |    |
| 6.1 DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | -                                                                                |    |
| ladder type – Specifications and applications of DA converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit 6 | Data Converters                                                                  | 6  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                  |    |
| 6.2 Analog to Digital Converter: Comparator type – Successive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                                                                  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 6.2 ANALOG TO DIGITAL CONVERTER: Comparator type – Successive                    |    |

|        | approximation type - Dual slope AD converter - Specifications and            |    |  |
|--------|------------------------------------------------------------------------------|----|--|
|        | applications of AD converter                                                 |    |  |
| Unit 7 | Logic Families                                                               | 12 |  |
|        | 7.1 Introduction to digital ICs,                                             |    |  |
|        | 7.2 TTL logic family - Introduction to TTL logic, Realization of basic gates |    |  |
|        | using TTL logic, TTL NAND gate - Totem pole output, open collector           |    |  |
|        | 7.3 ECL logic family - Introduction to ECL logic, ECL OR, NOR gate.          |    |  |
|        | 7.4 MOS families - Introduction to PMOS, NMOS & CMOS logic, Realization      |    |  |
|        | of PMOS inverter, NAND, NOR, Realization of NMOS inverter, NAND,             |    |  |
|        | NOR, Realization of CMOS inverter, NAND, NOR.                                |    |  |
|        | 7.5 Comparative studies of different type of logic families like DTL, TTL,   |    |  |
|        | CMOS, and ECL etc. with the following characteristics: (a) logic levels, (b) |    |  |
|        | power dissipation, (c) fan in and fan out, (d) propagation delay, and, (e)   |    |  |
|        | noise immunity, Basic gates using CMOS.                                      |    |  |
|        | 7.6 Interfacing of ICs of different logic families – Logic hazards           |    |  |
|        | 7.7 Study of 7400 TTL series / CD 4000 series gate ICs.                      |    |  |
|        | TOTAL                                                                        | 60 |  |

#### Practical:

Skills to be developed:

### **Intellectual skills:**

- 1. Identification of digital IC's of logic gates. Flip-flops, multiplexer and demultiplexers.
- 2. Ability to test different digital ICs.
- 3. Ability to design the combinational and Sequential logic circuits.

### Motors skills:

- 1. Ability to build the circuit.
- 2. To observe the result and handling the equipments.
- 1. To verify the truth table of NOT, OR, AND, NAND, NOR, XOR, X-NOR with TTL logic gates and CMOS logic gates.
- 2. To realize different Boolean expressions with logic gates.
- 3. To realize half-adder, full-adder, subtractor, parallel and serial full-adder.
- 4. To design 1's complement, 2's complement and 9's complement adder-subtractor.
- 5. To implement encoder, decoder, multiplexer and demultiplexer.
- 6. To construct parity generator and checker & comparator.
- 7. To verify the function of SR, D, JK and T Flip-flops.
- 8. To construct binary synchronous and asynchronous counter.
- 9. To design programmable up / down counter.
- 10. To design controlled shift register and study their function.
- 11. To study different memory ICs.
- 12. To study DA and AD converters.
- 13. To interface TTL and CMOS ICs.

### **WBSCTE**

### **Mini Projects:**

- 1. Design 1 digit BCD to 7 segment decoder using IC7447.
- 2. Design 4 bit binary adder/subtractor using IC7483.
- 3. Design 4 bit synchronous counter using IC7476.
- 4. Design decade counter using IC7492/93.

### **EXAMINATION SCHEME (Theoretical)**

A) Internal Examination: Marks- 20

B) End Semester Examination: Marks-70

C) Teacher's Assessment: Marks- 10

(i) Marks on Attendance: 05

(ii) Assignments & Interaction: 05

| Group | Group Unit Objective questions Note: 10 multiple choice and 5 short answer type |                                               |                | type questions     | Total Marks |
|-------|---------------------------------------------------------------------------------|-----------------------------------------------|----------------|--------------------|-------------|
|       |                                                                                 | To be set Multiple Choice ( Twelve questions) | To be answered | Marks per question |             |
| A     | 1,2,3                                                                           | 4                                             |                |                    |             |
| В     | 4,5                                                                             | 4                                             | Any ten        | 1                  | 10 X 1 = 10 |
| С     | 6,7                                                                             | 4                                             |                |                    |             |
|       |                                                                                 | To be set short answer type ( Ten questions)  | To be answered | Marks per question |             |
| A     | 1,2,3                                                                           | 4                                             |                |                    |             |
| В     | 4,5                                                                             | 4                                             | Any five       | 2                  | 5x2=10      |
| С     | 6,7                                                                             | 2                                             |                |                    |             |

| Group | Unit  | <b>Subjective Questions</b> |                                                |           | Total Marks        |
|-------|-------|-----------------------------|------------------------------------------------|-----------|--------------------|
|       |       | To be set                   | To be answered                                 | Marks per |                    |
|       |       | (Ten questions)             |                                                | question  |                    |
| A     | 1,2,3 | 4                           | Amy five (Taking at least                      |           |                    |
| В     | 4,5   | 3                           | Any five (Taking at least one from each group) | 10        | $10 \times 5 = 50$ |
| С     | 6,7   | 3                           | one from each group)                           |           |                    |

Note 1: Teacher's assessment will be based on performance on given assignments & quizzes.

Note 2: Assignments may be given on all the topics covered on the syllabus.

## EXAMINATION SCHEME (SESSIONAL)

Name of Subject: Digital Electronics Laboratory

Full Marks - 75

Subject Code:ETCE/LDE/S3

1. Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Third Semester.

Distribution of marks: Performance of Job – 15, Notebook – 10.

External Assessment of 50 marks shall be held at the end of the Third Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system.
 Distribution of marks: On spot job – 35, Viva-voce – 15.

|         | Text Books:                   |                                                       |                          |
|---------|-------------------------------|-------------------------------------------------------|--------------------------|
| Sl. No. | Name of the Author            | Title of the book                                     | Name of the Publisher    |
| 1       | G K Kharate                   | Digital Electronics                                   | OXFORD                   |
| 2       | Anil K. Maini                 | Digital Electronics                                   | Wiley                    |
| 3       | P Raja                        | Digital Electronics                                   | SCITECH                  |
| 4       | Malvino & Leach               | Digital Principles and Applications                   | Tata McGraw-Hill         |
| 5       | Anand Kumar                   | Fundamental Digital Circuits                          | Prentice Hall of India   |
| 6       | Jain                          | Modern Digital Electronics                            | Tata McGraw-Hill         |
| 7       | Anokh singh, AK Chhabra       | Fundamentals of Digital Electronics & Microprocessors | S.Chand                  |
| 8       | Taub & Schilling              | Digital Electronics                                   | Tata McGraw-Hill         |
| 9       | V. K. Puri                    | Digital Electronics                                   | Tata McGraw-Hill         |
| 10      | S. Salivahnan & A. Arivazhgan | Digital Circuits and Design                           | Vikash Publishing House  |
| 11      | Yarbrough                     | Digital Logic Applications and Design                 | Vikash Publishing House  |
| 12      | Morris Mano                   | Digital Logic and Computer Design                     | Pearson                  |
| 13      | V. Kumar                      | Digital Technology                                    | New Age Publishers       |
| 14      | Subhasis Maitra               | Digital Electronics                                   | JBBL                     |
| 15      | Sanjay Sharma                 | Digital Electronics (Digital Logic Design)            | Kataria & Sons           |
| 16      | DK Chanda & S Banerjee        | Digital Fundamentals and Applications                 | University Science Press |
| 17      | Floyd                         | Digital Fundamentals, 10e                             | Pearson                  |
| 18      | Dr. SK Mandal                 | Digital Electronics                                   | Tata McGraw-Hill         |
| 19      | Tocci                         | Digital Systems: Principles and Applications, 10e     | Pearson                  |

| Course Code: ETCE/ CPGM/ S3               | Semester: Third                                              |
|-------------------------------------------|--------------------------------------------------------------|
| Duration: One Semester (Teaching-15 weeks | Maximum Marks: 50                                            |
| + Internal Exam-2 weeks )                 |                                                              |
| Teaching Scheme:                          | Examination Scheme                                           |
| Theory: 2 contact hrs./ week              | Class Test (Internal Examination): 10 Marks                  |
| Tutorial: Nil                             | Teacher's Assessment (Attendance, Assignment & interaction): |
|                                           | 05 Marks                                                     |
| Practical: 1 contact hours/ week          | End Semester Examination: 35 Marks                           |
| Credit: 3 (Three)                         | Practical: 50 Marks                                          |

| Rationale: |  |  |
|------------|--|--|
| S1.        |  |  |
| No.        |  |  |

| 1.        | Pr                                                                                         | rogramming concept finds utility in understanding of high-level language, low                              | -level langua   | re and the |  |  |
|-----------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------|------------|--|--|
| 1.        |                                                                                            | subjects like Microprocessor, Microcontroller, PLC etc. This subject covers from the basic concept of C to |                 |            |  |  |
|           |                                                                                            | e arrays and function in C. This subject will act as "programming concept de                               |                 | _          |  |  |
|           |                                                                                            | will also become helpful to understand various application Software such as MATlab, Pspice etc.            |                 |            |  |  |
| Objec     |                                                                                            |                                                                                                            | riao, i spice e |            |  |  |
| Sl.       |                                                                                            | The students will be able to:                                                                              |                 |            |  |  |
| No.       | 1                                                                                          | The students will be able to.                                                                              |                 |            |  |  |
| 1.        | De                                                                                         | efine program and programming                                                                              |                 |            |  |  |
| 2.        |                                                                                            | riefly understand compiler, interpreter, linker and loader function.                                       |                 |            |  |  |
| 3.        |                                                                                            | nderstand algorithm and learn the different ways of stating algorithms.                                    |                 |            |  |  |
| 4.        | +                                                                                          | nderstand algorithm and rearr the different ways of stating algorithms.                                    |                 |            |  |  |
|           |                                                                                            |                                                                                                            |                 |            |  |  |
| 5.        | _                                                                                          | earn the data types, variables, constants, operators etc.                                                  | nt to als       |            |  |  |
| 6.        | -                                                                                          | et to know the input and output streams that exist in C to carry out the input outp                        |                 |            |  |  |
| 7.        | _                                                                                          | earn about decision type control construct and looping type control constructs in                          | C.              |            |  |  |
| 8.        | -                                                                                          | earn about one dimensional array and pointers.                                                             |                 |            |  |  |
| 9.        |                                                                                            | nderstand what a function is and how its use benefits a program                                            |                 |            |  |  |
| Pre-R     | equis                                                                                      | site:                                                                                                      |                 |            |  |  |
| Sl.       |                                                                                            |                                                                                                            |                 |            |  |  |
| No.       | D.                                                                                         |                                                                                                            |                 |            |  |  |
| 1.        | Bas                                                                                        | sic units of computer system                                                                               |                 |            |  |  |
|           |                                                                                            | G + + (M)                                                                                                  | T D : 1         | 37.1       |  |  |
|           | Contents (Theory) Periods Mark                                                             |                                                                                                            |                 |            |  |  |
| TT '      |                                                                                            | Group -A                                                                                                   | 04              |            |  |  |
| Unit: 1   | I                                                                                          | Introduction to Programming and overview of C                                                              |                 |            |  |  |
|           |                                                                                            | 1.1 CONCEPT OF PROGRAMMING LANGUAGES AND EXAMPLES                                                          |                 |            |  |  |
|           |                                                                                            | 1.2 Algorithm and flowcharts                                                                               |                 |            |  |  |
|           |                                                                                            | 1.3 Compiler, Interpreter, Loader, and Linker                                                              |                 |            |  |  |
|           |                                                                                            | 1.4 Source Code and Object Code                                                                            |                 |            |  |  |
|           |                                                                                            | 1.5 Place of C in computer language                                                                        |                 |            |  |  |
| I India / | ,                                                                                          | 1.6 Basic Structure of C                                                                                   | 07              |            |  |  |
| Unit: 2   | 2                                                                                          | Types, Operator & Expression                                                                               | 07              |            |  |  |
|           |                                                                                            | 2.1 C character set, tokens, constants, variables, keywords                                                |                 |            |  |  |
|           |                                                                                            | 2.2 PRIMARY DATA TYPES – their equivalent keywords and declaration                                         |                 |            |  |  |
|           |                                                                                            | 2.3 OPERATORS: Arithmetic – Increment – Decrement – Relational – Logical – Conditional – Bit Wise          |                 |            |  |  |
|           |                                                                                            | Conditional – Bit Wise  2.4 Assignment statement- C expressions-operator precedence                        |                 |            |  |  |
|           |                                                                                            |                                                                                                            |                 |            |  |  |
|           |                                                                                            | 2.5 UNFORMATTED I/O FUNCTIONS: getchar () – getch () — putchar () – putch () – gets () –puts()             |                 |            |  |  |
|           |                                                                                            |                                                                                                            |                 |            |  |  |
| Unit: 3   | 2.6 FORMATTED CONSOLE I / O: printf () - scanf ()  Unit; 2 Control Flow (Decision Molking) |                                                                                                            | 06              |            |  |  |
| Oiiit. S  | ,                                                                                          | Control Flow (Decision Making) 3.1 Introduction                                                            | 00              |            |  |  |
|           |                                                                                            | 3.2 IF-ELSE statement                                                                                      |                 |            |  |  |
|           |                                                                                            | 3.3 Looping: FOR,WHILE and DO-WHILE statements                                                             |                 |            |  |  |
|           |                                                                                            | 3.4 BREAK, CONTINUE and GOTO statements.                                                                   |                 |            |  |  |
|           |                                                                                            | DIEAK, CONTINUE AND OUTO STATEMENTS.                                                                       |                 |            |  |  |

|        | 3.5 Simple Program                                                              |             |
|--------|---------------------------------------------------------------------------------|-------------|
|        | Group-B                                                                         |             |
| Unit 4 | Arrays & Pointers                                                               | 08          |
|        | 4.1 Introduction                                                                |             |
|        | 4.2 Declaration and initialization of Array                                     |             |
|        | 4.3 Accessing of array elements and other allowed operations.                   |             |
|        | 4.4 Simple program with a one dimensional array                                 |             |
|        | 4.5 Understanding pointers, declaring and accessing pointer, '&' and '*'        |             |
|        | operators                                                                       |             |
|        | 4.6 Pointer expressions – Pointer assignments – Pointer arithmetic              |             |
| Unit 5 | Function                                                                        | 05          |
|        | 5.1 The concepts of functions                                                   |             |
|        | 5.2 Using functions: i) Function Declaration, ii) Function Definition, iii)     |             |
|        | Function Call                                                                   |             |
|        | 5.3 Simple program                                                              |             |
|        |                                                                                 | 30          |
|        | Total                                                                           |             |
|        | Contents (Pra                                                                   | ctical)     |
| Sl. Sk | ills to be developed                                                            |             |
| No.    |                                                                                 |             |
| 1. Int | ellectual Skills:                                                               |             |
| Pr     | actical:                                                                        |             |
|        | Skills to be developed:                                                         |             |
|        | 1. Use of programming language constructs in program implementation.            |             |
|        | 2. Improvement of Logical thinking capability                                   |             |
|        | 3. To be able to apply different logics to solve given problem.                 |             |
|        | 4. To be able to write program using different implementations for the same p   | oroblem     |
|        | 5. Study different types of errors as syntax semantic, fatal, linker & logical  |             |
|        | 6. Debugging of programs                                                        |             |
|        | 7. Understanding different steps to develop program such as                     |             |
|        | <ul><li>Problem definition</li></ul>                                            |             |
|        | <ul><li>Analysis</li></ul>                                                      |             |
|        | <ul> <li>Design of logic</li> </ul>                                             |             |
|        | <ul><li>Coding</li></ul>                                                        |             |
|        | <ul><li>Testing</li></ul>                                                       |             |
|        | <ul> <li>Modifications and error corrections of programming language</li> </ul> |             |
| 2. Mo  | otor Skills:                                                                    |             |
|        | i) Operate various parts of computer properly.                                  |             |
|        | ii) Problem solving skills.                                                     |             |
|        | iii) Draw Flow charts                                                           |             |
|        | boratory Experiments:                                                           |             |
| S1.    |                                                                                 |             |
| No.    |                                                                                 |             |
| Wr     | ite algorithm, Draw Flow chart, and Write programming codes in C on follo       | wing topics |

| 1.  | To find the sum and identify the greater number between any two numbers.                                 |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------|--|--|--|
| 2.  | To interchange the numeric values of two variables.                                                      |  |  |  |
| 3.  | Take three sides of a triangle as input and check whether the triangle can be drawn or not. If possible, |  |  |  |
|     | classify the triangle as equilateral, isosceles, or scalene                                              |  |  |  |
| 4.  | To test whether the given character is vowel or not.                                                     |  |  |  |
| 5.  | To find sum of the digits of an integer.                                                                 |  |  |  |
| 6.  | To find the roots of a quadratic equation.                                                               |  |  |  |
| 7.  | To check whether an input number is palindrome or not.                                                   |  |  |  |
| 8.  | To find the G.C.D and L.C.M of two numbers.                                                              |  |  |  |
| 9.  | To find the factorial of given number.                                                                   |  |  |  |
| 10. | To find the sum of n natural numbers.                                                                    |  |  |  |
| 11  | To accept 10 numbers and make the average of the numbers                                                 |  |  |  |
| 12  | To accept 10 elements and sort them in ascending or descending order.                                    |  |  |  |
| 13. | To find the summation of three numbers using function.                                                   |  |  |  |
| 14  | To find the maximum between two numbers using function                                                   |  |  |  |

## **Examination Scheme (theoretical):**

A) Internal Examination: Marks- 10

B) End Semester Examination: Marks-35

C) Teacher's Assessment: Marks- 5

(i) Marks on Attendance

(ii) Assignments & Interaction

| Group | Unit  | Objective questions                                             |                | Total Marks |           |
|-------|-------|-----------------------------------------------------------------|----------------|-------------|-----------|
|       |       | Note: 6 multiple choice and 4 short answer type questions to be |                |             |           |
|       |       |                                                                 | answered       |             |           |
|       |       | To be set Multiple Choice                                       | To be answered | Marks per   |           |
|       |       | ( Ten questions)                                                |                | question    |           |
| A     | 1,2,3 | 6                                                               | Anyciy         | 1           | 6 X 1 = 6 |
| В     | 4,5   | 4                                                               | Any six        | 1           | 0 A 1 = 0 |
|       |       | To be set short answer type                                     | To be answered | Marks per   |           |
|       |       | ( eight questions)                                              |                | question    |           |
| A     | 1,2,3 | 4                                                               |                |             |           |
| В     | 4,5   | 4                                                               | Any four       | 1           | 4x1=4     |

| Group | Unit  | <b>Subjective Questions</b> |                           |           | Total Marks       |
|-------|-------|-----------------------------|---------------------------|-----------|-------------------|
|       |       | To be set                   | To be answered            | Marks per |                   |
|       |       | ( Ten questions)            |                           | question  |                   |
| A     | 1,2,3 | 5                           | Any five (Taking at least | 5         | 5 X 5 = 25        |
| В     | 4,5   | 5                           | two from each group)      | 3         | $3 \times 3 = 23$ |

Note 1: Teacher's assessment will be based on performance on given assignments & quizzes.

Note 2: Assignments may be given on all the topics covered on the syllabus.

### EXAMINATION SCHEME (SESSIONAL)

Name of Subject: Computer Programming Language Laboratory

Full Marks - 50

Subject Code: ETCE/LCPGM/S3

1. Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Third Semester.

Distribution of marks: Performance of Job – 15, Notebook – 10.

External Assessment of 25 marks shall be held at the end of the Third Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system.
 Distribution of marks: On spot job - 15, Viva-voce - 15.

| Text Boo | Text Books:         |                                      |                         |  |  |
|----------|---------------------|--------------------------------------|-------------------------|--|--|
| Sl. No.  | Name of the Author  | Title of the book                    | Name of the Publisher   |  |  |
| 1.       | Balgurusamy         | Programming in 'C'                   | Tata Mc-Graw Hill       |  |  |
| 2.       | Reema Theraja       | Programming in 'C'                   | OXFORD                  |  |  |
| 3.       | Kamthane            | Programming in 'C'                   | Pearson                 |  |  |
| 4.       | Kanetkar            | Let's 'C'                            | BPB                     |  |  |
| 5.       | Herbert Shieldt     | Complete reference C                 | Tata Mc-Graw Hill       |  |  |
| 6.       | Kernigham & Ritchie | The C Programming Language           | Mc-Graw Hill            |  |  |
| 7.       | H. Schieldt         | C Made Easy                          | McGraw Hill             |  |  |
| 8.       | T. Jeyapoovan       | A first course in programming with C | Vikash Publishing House |  |  |
| 9.       | E Balaguruswamy     | Programming in ANSI C (edition 2.1)  | Tata McGraw-Hill        |  |  |

### 1. Websites:

- <a href="http://cplus.about.com/od/beginnerctutoriali/a/blctut.htm">http://cplus.about.com/od/beginnerctutoriali/a/blctut.htm</a>
- http://computer.howstuffworks.com/c.htm
- Objective questions:
  - 1. <a href="http://www.indiastudycenter.com/studyguides/sc/objtest/default.asp">http://www.indiastudycenter.com/studyguides/sc/objtest/default.asp</a>

Demo lectures with power point presentations using LCD projector should be arranged to develop programming concepts of students.

| Name of the course: Electrical Machine                                                              |                                                                |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| Course Code: ETCE/EM/S3                                                                             | Semester: Third                                                |  |  |
| Duration: One semester (Teaching-15 weeks +                                                         | Maximum Marks: 50                                              |  |  |
| Internal Exam-2 weeks )                                                                             |                                                                |  |  |
| Teaching Scheme:                                                                                    | Examination Scheme :                                           |  |  |
| Theory: 2 contact hrs./ week                                                                        | Internal Examination (: 10 Marks                               |  |  |
| Tutorial:                                                                                           | Teacher's Assessment (Attendance, Assignment & interaction): 5 |  |  |
|                                                                                                     | Marks                                                          |  |  |
| Practical: 2 contact hours/ week                                                                    | End Semester Examination: 35 Marks                             |  |  |
| Credit: 3                                                                                           |                                                                |  |  |
| Rationale:                                                                                          |                                                                |  |  |
| This subject is restricted to second year diploma in Electronics & Telecommunication. Technicians / |                                                                |  |  |

supervisors from all branches of engineering. They are expected to have some basic knowledge of major electrical equipments. Also the technicians working in different engineering fields have to deal with various types of electrical drives and equipment. Hence, it is necessary to study electric circuits, different types of electrical drives, their principles and working characteristics.

This subject covers analysis of ac and dc networks, working principles of commonly used AC and DC motors and their characteristics. The basic concepts studied in this subject will be very useful for understanding of other higher level subjects in further study.

### **Objectives:**

- 1. Know importance, working and construction of single phase transformer
- 2. Explain construction, working, performance and applications of various types of DC Genrators and DC motors
- 3. Understand the idea of Polyphase circuits and star-delta connections
- 4. Gain principle of induction motor and construction
- 5. Identify and describe electrical hazards and precautions that should be taken to avoid injury in the workplace constituting electrical machine. Acquire concept of electrical earthing.

|        | Periods                                                                              | Marks |  |
|--------|--------------------------------------------------------------------------------------|-------|--|
|        |                                                                                      |       |  |
| Unit 1 | DC Generators                                                                        | 6     |  |
|        | 1.1 Working principles, construction & types of DC generator                         |       |  |
|        | 1.2 Armature winding types - Lap & Wave winding                                      |       |  |
|        | 1.3 E.m.f equation, Methods of building up of e.m.f. (Numerical)                     |       |  |
|        | 1.4 Efficiency of DC generator, Losses in a generator, Condition for maximum         |       |  |
|        | efficiency                                                                           |       |  |
| Unit 2 | D.C. Motors                                                                          | 6     |  |
|        | 2.1 Motor principle: Comparison of generator and motor action                        |       |  |
|        | 2.2 Significance of back EMF and voltage equation of a motor                         |       |  |
|        | 2.3 Motor characteristics: Torque Vs Armature current, Speed Vs Torque of a          |       |  |
|        | series, shunt and compound motor.                                                    |       |  |
|        | 2.4 Losses and efficiency of a DC motor                                              |       |  |
|        | 2.5 Various methods adopted to control speed of a DC motor, Electric braking of      |       |  |
|        | a shunt motor, Electric braking of series motor                                      |       |  |
|        | 2.6 Applications                                                                     |       |  |
|        | Group-B                                                                              |       |  |
| Unit 3 | Transformer                                                                          | 7     |  |
|        | 3.1 Working principle of transformer, classification, brief description of each part |       |  |
|        | its function and material used.                                                      |       |  |
|        | 3.2 Emf equation (no derivation)                                                     |       |  |
|        | 3.3 Voltage ratio, current ratio and transformation ratio.                           |       |  |
|        | 3.4 kVA rating of a transformer                                                      |       |  |

|                                                                                                  | 3.5 Equivalent circuit of transformer                                                 |    |   |  |  |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----|---|--|--|--|
|                                                                                                  | 3.6 Transformer tests: Open circuit or no load test, Short circuit or impedance test. |    |   |  |  |  |
|                                                                                                  | 3.7 Losses in a transformer                                                           |    |   |  |  |  |
|                                                                                                  | 3.8 Efficiency and regulation of transformer- definition, equation and simple         |    |   |  |  |  |
|                                                                                                  | numerical on it)                                                                      |    |   |  |  |  |
|                                                                                                  | 3.9 Condition for maximum efficiency (no derivation)                                  |    |   |  |  |  |
| Unit 4                                                                                           | Polyphase circuits                                                                    | 6  |   |  |  |  |
|                                                                                                  | 4.1 Advantages of 3 phase system over 1 phase system                                  |    |   |  |  |  |
|                                                                                                  | 4.2 Principle of 3-phase e.m.f generation and its wave form                           |    |   |  |  |  |
|                                                                                                  | 4.3 concept of phase sequence and balanced and unbalanced load                        |    |   |  |  |  |
|                                                                                                  | 4.4 Relation between phase and line current, phase and line voltage in star           |    |   |  |  |  |
|                                                                                                  | connected and Delta connected balanced system. (no derivation)                        |    |   |  |  |  |
|                                                                                                  | 4.5 Calculation of current, power, power factor in a 3 phase balanced                 |    |   |  |  |  |
|                                                                                                  | system (simple numerical)                                                             |    |   |  |  |  |
| Unit 5                                                                                           | Total construction, Operating principle and application of 3 phase induction motor    | 2  |   |  |  |  |
| Unit 6                                                                                           | Electric hazards, Safety, Protections and Earthing                                    | 3  |   |  |  |  |
|                                                                                                  | 5.1 Electric Shock, Effects of Electrical Current on the Human Body, Electrical       |    |   |  |  |  |
|                                                                                                  | Emergencies- actions to be taken when an electrical emergency arises.                 |    |   |  |  |  |
|                                                                                                  | 5.2 Earthing - Necessity of earthing, types of earthing (name only), Earth            |    |   |  |  |  |
|                                                                                                  | resistance values, Eventualities in case of failure of earthing, Common               |    |   |  |  |  |
|                                                                                                  | electricity rules regarding earthing (related to electrical installation of lighting  |    |   |  |  |  |
|                                                                                                  | & machines only).                                                                     |    |   |  |  |  |
|                                                                                                  | Total                                                                                 | 30 |   |  |  |  |
| Practical:                                                                                       |                                                                                       |    | " |  |  |  |
| Skills to b                                                                                      | e developed:                                                                          |    |   |  |  |  |
| Intellectu                                                                                       | al skills:                                                                            |    |   |  |  |  |
| 1. Analyti                                                                                       | cal skills.                                                                           |    |   |  |  |  |
| 2. Identifi                                                                                      | cation skills.                                                                        |    |   |  |  |  |
|                                                                                                  |                                                                                       |    |   |  |  |  |
| Motor ski                                                                                        | lls:                                                                                  |    |   |  |  |  |
| 1. Measur                                                                                        | ement (of parameters) skills.                                                         |    |   |  |  |  |
| 2. Connec                                                                                        | tion (of machine terminals) skills.                                                   |    |   |  |  |  |
|                                                                                                  |                                                                                       |    |   |  |  |  |
| List of Pr                                                                                       | actical:                                                                              |    |   |  |  |  |
| 1. S                                                                                             | Study the construction features of DC Machine                                         |    |   |  |  |  |
| 2. To control the speed of D.C. shunt motor above normal speed & draw the speed characteristics. |                                                                                       |    |   |  |  |  |
| 3. To control the speed of D.C. shunt motor below normal speed & draw the speed characteristics. |                                                                                       |    |   |  |  |  |
| 4. S                                                                                             |                                                                                       |    |   |  |  |  |
|                                                                                                  |                                                                                       |    |   |  |  |  |
|                                                                                                  | S.C. test.                                                                            |    |   |  |  |  |
|                                                                                                  |                                                                                       |    |   |  |  |  |
| Text book                                                                                        | s:                                                                                    |    |   |  |  |  |
|                                                                                                  |                                                                                       |    |   |  |  |  |

| Sl. No. | Titles of Book                                                     | Name of Author         | Name of Publisher          |
|---------|--------------------------------------------------------------------|------------------------|----------------------------|
| 1.      | Electrical Machines                                                | S.K.Bhattacharya       | Tata McGraw-Hill           |
| 2.      | Electrical Technology- Vol-II                                      | B.L.Thereja            | S.Chand                    |
| 3.      | Electrical Machinery                                               | Dr. S.K.Sen            | Khanna Publisher           |
| 4.      | Electrical Machines                                                | J.B.Gupta              | S.K.Kataria & Sons.        |
| 5.      | Principles of Electrical Machines                                  | V.K.Mehta, Rohit Mehta | S. Chand                   |
| 6.      | Electrical Machinery                                               | P.S.Bhimbra            | Khanna Publisher           |
|         | Electric Circuits                                                  | Bell                   | OXFORD                     |
| 7.      | Electrical Machines                                                | M.N.Bandyopadhyay      | Prentice Hall of India     |
| 8.      | Electrical Machines                                                | Ashfaq Husain          | Dhanpat Rai & Co.          |
| 9.      | Principles of Electrical Machines and Power Electronics            | P.C.Sen                | Wiley India                |
| 10.     | Fundamentals of Electrical Machines                                | B.R.Gupta & V Singhal  | New Age Publisher          |
| 11.     | Electrical Machines                                                | Nagrath & Kothari      | Tata McGraw-Hill           |
| 12.     | Electrical Technology                                              | H.Cotton               | C.B.S. Publisher New Delhi |
| 13.     | Electrical Machines                                                | Smarajit Ghosh         | Pearson                    |
| 14.     | Electrical Technology                                              | E.Huges                | ELBS                       |
| 15.     | Electrical Technology                                              | H. Cotton              | Pitman                     |
|         | Electric Motor:Application and Control                             | Deshpande              | Prentice Hall of India     |
| 16.     | A Course in Electrical & Electronics Measurement & Instrumentation | A.K.Sawhney            | Dhanpat Rai & Sons         |

## EXAMINATION SCHEME (THEORETICAL)

A) Internal Examination: Marks- 10

C) Teacher's Assessment: Marks- 5

B) End Semester Examination: Marks-35

(i) Marks on Attendance

(ii) Assignments & Interaction

| Group | Unit    | Objective questions         |                |           | Total Marks |
|-------|---------|-----------------------------|----------------|-----------|-------------|
|       |         | Note: 6 multiple choice and |                |           |             |
|       |         | :                           | answered       |           |             |
|       |         | To be set Multiple Choice   | To be answered | Marks per |             |
|       |         | ( Ten questions)            |                | question  |             |
| A     | 1,2     | 4                           | Anyciy         | 1         | 6 X 1 = 6   |
| В     | 3,4,5,6 | 6                           | Any six        | 1         | 0 X 1 = 0   |
|       |         | To be set short answer type | To be answered | Marks per |             |
|       |         | ( eight questions)          |                | question  |             |
| A     | 1,2     | 3                           |                |           |             |
| В     | 3,4,5,6 | 5                           | Any four       | 1         | 4x1=4       |

| Group UNIT Subjective Questions Total Mark |
|--------------------------------------------|
|--------------------------------------------|

|   |         | To be set Multiple | To be answered            | Marks per |                    |
|---|---------|--------------------|---------------------------|-----------|--------------------|
|   |         | Choice             |                           | question  |                    |
|   |         | ( Ten questions)   |                           |           |                    |
| A | 1,2     | 3                  | Any five (Taking at least | 5         | 5 X 5 = 25         |
| В | 3,4,5,6 | 3                  | two from each group)      | 3         | $J \Lambda J = 2J$ |

### EXAMINATION SCHEME (SESSIONAL)

Subject: Electrical Machine Laboratory Full Marks-50

Code: ETCE/LEM/S3

Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Third Semester.
 Distribution of marks: Performance of Job – 15, Notebook – 10.

External Assessment of 25 marks shall be held at the end of the Third Semester on the entire syllabus. One
Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system.

Distribution of marks: On spot job – 15, Viva-voce – 10.

| Name of the course: Professional Practice-I |                                         |  |  |  |
|---------------------------------------------|-----------------------------------------|--|--|--|
| Course Code: ETCE/PP-I/S3                   | Semester: Third                         |  |  |  |
| Duration: 17 weeks (Teaching-15 weeks +     | Maximum Marks: 50                       |  |  |  |
| Internal Exam-2 weeks )                     |                                         |  |  |  |
| Teaching Scheme:                            | <b>Examination Scheme :</b>             |  |  |  |
| Theory: Nil                                 | Internal Teachers' Assessment: 50 Marks |  |  |  |
| Tutorial:                                   |                                         |  |  |  |
| Practical: 3 contact hours/ week            | End Semester Examination: Nil           |  |  |  |
| Credit: 2                                   |                                         |  |  |  |
| Rationale:                                  |                                         |  |  |  |

In addition to the exposure both in theoretical and practical from an academic institution, it is desired that student should be familiar with the present day industry working environment and understand the emerging technologies used in these organisation. Due to globalization and competition in the industrial and service sectors, acquiring overall knowledge will give student an better opportunity for placement facility and best fit in their new working environment.

In the process of selection, normal practice adopted is to see general confidence, positive attitude and ability to communicate, in addition to basic technological concepts.

The purpose of introducing professional practices is to provide opportunity to students to undergo activities which will enable them to develop confidence. Industrial visits, expert lectures, seminars on technical topics and group discussion are planned in a semester so that there will be increased participation of students in learning process.

### **Objectives:**

- 1. Acquire information from different sources.
- 2. Enhance creative skills
- 3. Prepare notes for given topic.
- 4. Present given topic in a seminar.
- 5. Interact with peers to share thoughts.
- 6. Acquire knowledge on Open Source Software and its utility

- 7. Understand software for designing electronics circuits
- 8. Acquire knowledge of designing and maintenance of Electronics circuits, PCB and relevant software
- 9. Understand application of technologies in industry scenario.
- 10. Prepare a report on industrial visit, expert lecture.

| Content (Name of topic) |              |                                                                          | Periods | Marks |
|-------------------------|--------------|--------------------------------------------------------------------------|---------|-------|
| Group-A                 |              |                                                                          |         |       |
| Unit 1                  | Field Visits |                                                                          | 15      |       |
|                         | Structured   | field visits (minimum three) be arranged and report of the same          |         |       |
|                         | should be s  | submitted by the individual student, to form a part of the term work.    |         |       |
|                         | The field v  | risits may be arranged in the following areas / industries:              |         |       |
|                         | i)           | Power supply/UPS/SMPS/Inverter manufacturing unit                        |         |       |
|                         | ii)          | Electronics Instruments calibration laboratories                         |         |       |
|                         | iii)         | Electronic security systems for Residential building                     |         |       |
|                         | iv)          | Small hydro power station                                                |         |       |
|                         | v)           | Wind mill                                                                |         |       |
| Unit 2                  | Lectures b   | oy Professional / Industrial Expert to be organized from of the          | 18      |       |
|                         | following    | areas (any four)                                                         |         |       |
|                         | i)           | Non conventional energy sources                                          |         |       |
|                         | ii)          | Open Source Software- an introduction and practice session               |         |       |
|                         |              | with Libre Office                                                        |         |       |
|                         |              | • Introduction to Libre Office Writer                                    |         |       |
|                         |              | Introduction to Libre Office Calc                                        |         |       |
|                         |              | Introduction to Libre Office Impress                                     |         |       |
|                         |              | <ul> <li>Introduction to Libre Office Base</li> </ul>                    |         |       |
|                         |              | • Introduction to Libre Office Math                                      |         |       |
|                         |              | • Introduction to Libre Office Draw                                      |         |       |
|                         | iii)         | OSCAD - Open Source EDA tool for circuit design, simulation              |         |       |
|                         |              | and PCB design.                                                          |         |       |
|                         | iv)          | Water pollution control                                                  |         |       |
|                         | v)           | Mobile communication                                                     |         |       |
|                         | vi)          | Various government schemes such as EGS,                                  |         |       |
|                         | vii)         | Industrial hygiene.                                                      |         |       |
|                         | viii)        | Recent innovations of electronic gadgets in daily life                   |         |       |
|                         | Seminar :    |                                                                          | 12      |       |
|                         | Any one      | seminar on the topics suggested below:                                   |         |       |
|                         | Students (   | Group of 4 to 5 students) has to search /collect information about the   |         |       |
|                         | topic throu  | gh literature survey, visits and discussions with experts / concerned    |         |       |
|                         | persons:     |                                                                          |         |       |
|                         | Students w   | rill have to submit a report of about 10 pages and deliver a seminar for |         |       |
|                         | 10 minutes   | 3.                                                                       |         |       |
|                         | 1. W         | Vater supply schemes/Problems of drinking water in rural area            |         |       |

| 2.    | Problems related to traffic control                   |    |  |
|-------|-------------------------------------------------------|----|--|
| 3.    | Electronic rolling display                            |    |  |
| 4.    | Electronic systems used in Multiplex                  |    |  |
| 5.    | Pani Panchayat Yojana for equal distribution of water |    |  |
| 6.    | Any other suitable topic                              |    |  |
| TOTAL |                                                       | 45 |  |

### Reference book for OSCAD

| Sl No. | Titles of Book | Name of Author                                    | Name of Publisher              |
|--------|----------------|---------------------------------------------------|--------------------------------|
| 1.     | OSCAD          | Yogesh Save, Rakhi R, Shambhulingayyan N.D.,      | Shroff Publisher & Distributor |
|        |                | Rupak M Rokade, Ambikeswar Srivastava, Manas      |                                |
|        |                | Ranjan Das, Lavita Pereira, Sachin Patil, Srikant |                                |
|        |                | Patnaik, Kannan M. Moudgalya                      |                                |

Website: (i) <a href="http://oscad.in">http://oscad.in</a>

(ii) http:/spoken-tutorial.org of Indian Institute of Technology, Bombay (for more detail about Open source Software such as Libre Office, OSCAD and the like) which is a part of National Mission on Education through ICT, MHRD Govt. of India.

Demo lectures with power point presentations using LCD projector should be arranged for developing concepts on various topics.